Skip to main content
Log in

Spatial and temporal trends of metals and arsenic in German freshwater compartments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium, lead, mercury, copper, nickel, zinc, and arsenic were analyzed in suspended particulate matter (SPM), zebra mussels, and bream sampled yearly under the program of the German Environmental Specimen Bank (ESB) in the rivers Rhine, Elbe, Danube, Saar, Mulde, and Saale and in Lake Belau. Temporal and spatial trends were analyzed, correlations between metal levels in different specimen types assessed, and sampling sites ranked according to their metal levels by calculating a Multi-Metal Index (MMI) for every specimen type and site. SPM: Highest metal loads were detected in Mulde, Saale, and Elbe right downstream of the Saale confluence. In the Elbe, metal loads in SPM were mostly highest in the upper and middle section of the river while in Rhine and Saar concentrations increased downstream. Temporal trends since 2005 were detected only at three sites. Zebra mussel: MMIs were highest in the tidal section of the Elbe and the lower Rhine and lowest in Lake Belau and the upper Danube. Different temporal trends were detected since the early 1990s depending on site and metal. Bream: As, Pb, Cu, and Hg were analyzed in muscle tissue and Pb, Cd, Cu, and Zn in liver. For both tissues, MMIs were highest in Mulde and Saale and the lower and middle Elbe. Since the early 1990s, Hg, Pb, and Cu decreased in bream muscle at many sites while As increased at 6 of the 17 sites. The findings indicate that Hg, Pb, and Cu have obviously decreased in many freshwater ecosystems in recent years, whereas As and Ni levels have increased at several sites. Metal levels and temporal trends mostly differed between the specimen types under investigation and only few correlations between specimen types were detected. This underlines the importance of including different components of an ecosystem when assessing its environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullaev E (1980) Nutrition of the bream Abramis brama in lakes of the Khorezm Oblast Uzbek-SSR USSR. Uzb Biol Zh 0(4):43–45

    Google Scholar 

  • Adams MS, Ballin U, Gaumert T, Hale BW, Kausch H, Kruse R (2001) Monitoring selected indicators of ecological change in the Elbe River since the fall of the Iron Curtain. Environ Conserv 28:333–344

    Article  CAS  Google Scholar 

  • ARGE (Arbeitsgemeinschaft zur Reinhaltung der Elbe) (2000) Schadstoffüberwachung der Elbe mit der Fischart Brassen (Abramis brama L.)—Ein Klassifizierungssystem. Pp 41

  • Bache CA, Gutemann WH, Lish DJ (1971) Residues of total mercury and methylmercuric salts in lake trout as a function of age. Science 172:951–953

    Article  CAS  Google Scholar 

  • Baker SM, Levinton JS, Kurdziel JP, Shumway SE (1998) Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. J Shellfish Res 17:1207–1213

    Google Scholar 

  • Bignert A (2007) PIA statistical application developed for use by the Arctic Monitoring and Assessment Programme (available from www.amap.no)

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Boudou A, Ribeyre F (1997) Aquatic Ecotoxicology: From ecosystem to the cellular and molecular levels. Environ Health Perspect 105(Suppl 1):21–35

    Article  CAS  Google Scholar 

  • Connell DW (1998) Bioaccumulation of chemicals by aquatic organisms. In: Schüürmann G, Markert B (eds) Ecotoxicology: Ecological Fundamentals, Chemical Exposure, and Biological Effects. Brisbane, New York, pp 439–450

    Google Scholar 

  • Dušek L, Svobodová Z, Janoušková D, Vykusová B, Jarkovský J, Šmíd R, Pavliš P (2005) Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Multispecies monitoring study 1991-1996. Ecotox Environ Safe 61:256–267

    Article  Google Scholar 

  • EC (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating arsenic, cadmium, mercury, nickel and polyaromatic hydrocarbons in ambient air. OJ, L23/3 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:023:0003:0016:EN:PDF

  • EC (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. OJ, L364/5 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF

  • EC (2008a) Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. OJ L173/6 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:173:0006:0009:EN:PDF

  • EC (2008b) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ, L 152/1 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF

  • EC (2008c) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy. OJ, L 348/88 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0084:0097:EN:PDF

  • EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. OJ, L226/1 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF

  • Elder JF, Collins JJ (1991) Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems. Rev Environ Contam Toxicol 122:37–79

    CAS  Google Scholar 

  • EN 1483 (2007) Water quality - Determination of mercury - Method using atomic absorption spectrometry. German version DIN EN 1483:2007

    Google Scholar 

  • EN 13346 (2000) Characterization of sludges - Determination of trace elements and phosphorus - Aqua regia extraction methods. German version DIN EN 13346:2001

  • E-PRTR (2008) The European Pollution Release and Transfer Register. (http://prtr.ec.europa.eu/PollutantReleases.aspx) (accessed June 2011)

  • Farkas A, Salánki J, Specziár A (2003) Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 37:959–964

    Article  CAS  Google Scholar 

  • Federal Environment Agency (2008) German Environmental Specimen Bank – Concept, Berlin, Germany http://www.umweltprobenbank.de/upb_static/fck/download/concept_oct_2008_en.pdf

  • Fent K (1998) Ökotoxikologie: Umweltchemie - Toxikologie - Ökologie. New York, Stuttgart

    Google Scholar 

  • FGG Elbe. Flussgebietsgemeinschaft Elbe (River Basin Community Elbe) Database FIS http://176.28.42.206/FisFggElbe/content/start/ZurStartseite.action;jsessionid=0DCA632198EC95EA6F8B51A066F5C040 (data access 22.10.2012)

  • FGG Rhein. Flussgebietsgemeinschaft Rhein (River Basin Community Rhine)/database http://maps.wasserblick.net:8080/dkrr-zt/auswahl.asp?S=0

  • Förstner U, Schoer J, Knauth H-D (1990) Metal pollution in the tidal Elbe River. Sci Tot Environ 97(98):347–368

    Article  Google Scholar 

  • Fuchs S, Scherer U, Wander R, Behrendt H, Venohr M, Opitz D, Hillenbrand T, Marscheider-Weidemann F, Götz T (2010) Berechnung von Stoffeinträgen in die Fließgewässer Deutschlands mit dem Modell MONERIS. Umweltbundesamt Berlin, Forschungsbericht FKZ 20424218/20524204. UBA-Texte 45/2010, pp 243 http://www.umweltdaten.de/publikationen/fpdf-l/4017.pdf

  • Gundacker C (2000) Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ Pollut 110:61–71

    Article  CAS  Google Scholar 

  • Gunkel G (1994) Bioindikation in aquatischen Ökosystemen. Jena, Stuttgart

    Google Scholar 

  • Hillenbrand T, Marscheider-Weidemann F, Strauch M, Heitmann K, Schaffrin D (2007) Emissionsminderung für prioritäre und prioritäre gefährliche Stoffe der Wasserrahmenrichtlinie – Stoffdatenblätter. Umweltbundesamt Forschungsbericht 203 21 280. UBA texte 29/07. http://www.umweltdaten.de/publikationen/fpdf-l/3312.pdf

  • Holy M, Leblond S, Pesch R, Schröder W (2009) Assessing spatial patterns of metal bioaccumulation in French mosses by means of an exposure index. Environ Sci Pollut Res 16:499–507

    Article  CAS  Google Scholar 

  • ICPE (2005) International Commission for the Protection of the Elbe (ed): Vierter Bericht über die Erfüllung des “Aktionsprogramms Elbe” im Zeitraum 2003 bis 2004. ICPE Report Magdeburg, pp. 64 http://www.ikse-mkol.org/fileadmin/download/D/3_Themen/5_Aktionsprogramme/1_Vierter%20Bericht%20%3Fber%20die%20Erfuellung%20des%20Aktionsprogramms%20Elbe%20i/Download/IKSE-4-Bericht-AP-Elbe.pdf

  • ICPR (2011) International Commission for the Protection of the Rhine. Vergleich des Istzustandes mit dem Sollzustand des Rheins 1990 bis 2008. Technical Report 193, 29 pp. http://www.iksr.org/uploads/media/193_d__03.pdf

  • ISO 11885 (2007) Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES); German version EN ISO 11885:2009

  • Lepom P, Irmer U, Wellmitz J (2012) Mercury levels and trends (1993–2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters. Chemosphere 86:202–211

    Article  CAS  Google Scholar 

  • Löffler H (1984) Zur Ökologie des Brachsen (Abramis brama) im Bodensee. Aquatic Sci 46(1):147–161

    Article  Google Scholar 

  • Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176(177):379–396

    Article  Google Scholar 

  • Luschützky EF (2005) Schwermetallbelastung von Dreissena polymorpha in Donau und Drau und ihre Bedeutung als Bioindikator. UWSF – Z Umweltchem Ökotox 17:68–76

    Article  Google Scholar 

  • Maršálek P, Svobodová Z, Randák T (2006) Total mercury and methyl mercury contamination in fish from various sites along the Elbe River. Acta Vet Brno 75:579–585

    Article  Google Scholar 

  • Mason RP, Lapote J-M, Andres S (2000) Factors controlling the bioaccumulation of mercury, methymercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283–297

    Article  CAS  Google Scholar 

  • Miller A, Bignert A, Porvari P, Danielsson S, Verta M (2013) Mercury in Perch (Perca fluviatilis) from Sweden and Finland. Water Air Soil Pollut 224:1472–1483

    Article  Google Scholar 

  • Nicholson MD, Fryer R, Larsen JR (1998) Temporal trend monitoring: Robust method for analysing contaminant trend monitoring data Copenhagen: ICES, Techniques in Marine Environmental Sciences, No 20

  • Noël L, Chekri R, Millour S, Merlo M, Leblanc J-C, Guérin T (2013) Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas. Chemosphere 90:1900–1910

    Article  Google Scholar 

  • OGewV - Oberflächengewässerverordnung vom 20.Juli 2011 (BGBl. I S. 1429)

  • Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43:117–127

    Article  CAS  Google Scholar 

  • Persson A, Brönmark C (2002) Foraging capacities and effects of competitive release on ontogenetic diet shift in bream, Abramis brama. Oikos 97:271–281

    Article  Google Scholar 

  • Phillips DJH, Rainbow PS (1993) Biomonitoring of Trace Aquatic Contaminants. Glasgow, Weinheim, London

    Book  Google Scholar 

  • Pyle GG, Rajotte JW, Couture P (2005) Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotox Environ Saf 61:287–312

    Article  CAS  Google Scholar 

  • Rohde S (2010) Altbergbau im Erzgebirge und seine Einflüsse auf Grund- und Oberflächengewässer. 7. Gewässerforum Mulde – weiße Elster, Annaberg-Buchholz, 28.10.2010 http://www.umwelt.sachsen.de/umwelt/wasser/download/7_Forum_MWE_Diskussionsrunde_Altbergbau_ROHDE.pdf

  • Rüdel H, Uhlig S, Weingärtner M (2009) Guidelines for Sampling and Sample Processing: Pulverisation and Homogenisation of Environmental Samples by Cryomilling. pp 8 http://www.umweltprobenbank.de/upb_static/fck/download/IME_SOP_preparation_Dez2008_V200.pdf

  • Rüdel H, Fliedner A, Kösters J, Schröter-Kermani C (2010) Twenty years of element analysis of marine biota within the German Environmental Specimen Bank – a thorough look at the data. Environ Sci Pollut Res 17:1025–1034

    Article  Google Scholar 

  • Schubert B, Heininger P, Keller M, Ricking M, Claus E (2012) Monitoring of contaminants in suspended particulate matter as an alternative to sediments. Trends Anal Chem 36:58–70

    Article  CAS  Google Scholar 

  • Schulze T, Ricking M (2005). Entwicklung einer Verfahrensrichtlinie “Sedimente und Schwebstoffe”. Abschlussbereicht FKZ 301 02 013. Umweltbundesamt Berlin, pp: 128 www.umweltprobenbank.de/en/documents/publications/11929

  • Schulze T, Ricking M, Schröter-Kermani C, Körner A, Denner H-D, Weinfurtner K, Winkler A, Pekdeger A (2007) The German Environmental Specimen Bank: Sampling, processing, and archiving sediment and suspended particulate matter. J Soils Sediments 7:361–367

    Article  CAS  Google Scholar 

  • SLULG Saxonian State Office for Environment, Agriculture and Geology/Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (2011) http://www.umwelt.sachsen.de/umwelt/wasser/7112.htm

  • Sprung M, Rose U (1988) Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia 77:526–532

    Article  Google Scholar 

  • Suedel BC, Boraczek JA, Peddicord RK, Clifford PA, Dillon TM (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev Environ Contam Toxicol 136:21–89

    CAS  Google Scholar 

  • Umweltbundesamt (1996) Umweltprobenbank des Bundes – Verfahrensrichtlinien. Umweltbundesamt (ed), Erich Schmidt Verlag, Berlin

  • US EPA (1997) Mercury study report to Congress, vol VII: Characterization of human health and wildlife risks from mercury exposure in the United States. EPA-452/R-97–009. US Environmental Protection Agency, Washington

  • Van de Graaff S, Kopf W, Gast R, Ferling H (2009) Untersuchung von Fischen und Muscheln aus bayerischen Gewässern. Fisch- und Muschelmonitoringprogramm. Bericht 2005/2006 und 2006/2007. Bayerisches Landesamt für Umwelt (LfU) pp. 73 http://www.lfu.bayern.de/analytik_stoffe/akkumulationsmonitoring/stoffanreicherung_wassertiere_daten/doc/bericht_fischmonitoring.pdf

  • Vanderploeg HA, Johengen TH, Liebig JR (2009) Feedback between zebra mussel selective feeding and algal composition affects mussel condition: did the regime changer pay a price for its success? Freshwater Biol 54:47–63

    Article  Google Scholar 

  • Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207

    Article  CAS  Google Scholar 

  • Wenzel A, Böhmer W, Müller J, Rüdel H, Schröter-Kermani C (2004) Retrospective monitoring of alkylphenols and alkylphenol monoethoxylates in aquatic biota from 1985–2001: Results from the German Environmental Specimen Bank. Environ Sci Technol 38:1654–1661

    Article  CAS  Google Scholar 

  • Winfield IJ, Townsend CR (1988) Factors affecting prey selection by young bream (Abramis brama) and roach (Rutilus rutilus), insights provided by parallel studies in laboratory and field. Environ Biol Fishes 21(4):279–292

    Article  Google Scholar 

  • Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P (2003) Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 51:633–642

    Article  CAS  Google Scholar 

  • Zrnčić S, Oraić M, Ćaleta M, Mihaljević Ž, Zanella D, Bilandžić N (2013) Biomonitoring of heavy metals in fish from the Danube River. Environ Monit Assess 185:1189–1198

    Article  Google Scholar 

Download references

Acknowledgments

The funding of the German Environmental Specimen Bank project partners by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety is gratefully acknowledged. The authors thank the ESB teams of Trier University, Freie Universität Berlin, and Fraunhofer IME for their excellent technical assistance. Dr. Martin Müller (Fraunhofer IME) is thanked for data management and statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Fliedner.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliedner, A., Rüdel, H., Knopf, B. et al. Spatial and temporal trends of metals and arsenic in German freshwater compartments. Environ Sci Pollut Res 21, 5521–5536 (2014). https://doi.org/10.1007/s11356-013-2487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2487-y

Keywords

Navigation