Skip to main content
Log in

Chelate-Assisted Phytoremediation of Cu-Pyrene-Contaminated Soil Using Z. mays

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study compares the efficiency of a synthetic chelate (ethylenediaminetetraacetic acid-EDTA), a natural low-molecular-weight organic acid (citric acid), and their combination for phytoremediation of Cu-pyrene co-contaminated soils. Zea mays was grown in each soil and amended with citric acid and/or EDTA to understand the effect of chelates during phytoremediation of contaminated soils. In Cu or pyrene-contaminated soil, plant growth was negatively affected by EDTA (43 %) and citric acid (44 %), respectively, while EDTA + citric acid promoted (41 %) plant growth in co-contaminated soil. EDTA and EDTA + citric acid increased the phytoextraction of Cu in Cu-contaminated and co-contaminated soils, respectively. In pyrene-contaminated soil, all tested chelates increased the dissipation of pyrene reaching 90.4 % for citric acid, while in co-contaminated soil, only citric acid or EDTA + citric acid enhanced pyrene dissipation. These results show that Z. mays can be effective with the help of chelates in phytoextraction of Cu and dissipation of pyrene in co-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrew, C., Thomas, B., Chloe, A., Smith, J., & Thompson, L. (2007). Phytoremediation of mixed contaminated soil using hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environmental Pollution, 147, 74–82.

    Article  Google Scholar 

  • Baylock, M., Salt, D., Dushenkor, S., Zakharora, O., Gussman, C., Kapulnik, Y., Ensley, B., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  • Binet, P., Portal, J., & Leyval, C. (2000). Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology and Biochemistry, 32, 2011–2017.

    Article  CAS  Google Scholar 

  • Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annus. Chemosphere, 45, 21–28.

    Article  CAS  Google Scholar 

  • Chigbo, C., & Batty, L. (2013). Phytoremediation potential of B. juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soils with aged soils. Journal of Environmental Management, 129, 18–24.

    Article  CAS  Google Scholar 

  • Degryse, F., Smolders, E., & Merckx, R. (2006). Labile Cd complexes increase Cd availability to plants. Environmental Science and Technology, 40, 830–836.

    Article  CAS  Google Scholar 

  • Ebbs, S., & Kochian, L. (1998). Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare) and Indian mustard (Brassica juncea). Environmental Science and Technology, 32, 802–806.

    Article  CAS  Google Scholar 

  • Eibes, G., Chau, T., Feijoo, G., Moreira, M., & Lema, J. (2005). Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme and Microbial Technology, 37, 365–372.

    Article  CAS  Google Scholar 

  • Gao, Y., & Zhu, L. (2004). Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 55, 1169–1178.

    Article  CAS  Google Scholar 

  • Gramss, G., Voigt, K., & Bergmann, H. (2004). Plant availability and leaching of (heavy) metals from ammonium, calcium, carbohydrate and citric acid-treated uranium mine dump soil. Journal of Plant Nutrition and Soil Science, 167, 417–427.

    Article  CAS  Google Scholar 

  • Gunawardana, B., Singhal, N., & Johnson, A. (2010). Amendments and their combined application for enhanced copper, cadmium and lead uptake by Lolium perenne. Plant and Soil, 329, 283–294.

    Article  CAS  Google Scholar 

  • Gunawardana, B., Singhal, N., & Johnson, A. (2011). Effects of amendments on copper, cadmium and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. International Journal of Phytoremediation, 13, 215–232.

    Article  CAS  Google Scholar 

  • Jean, L., Gautier-, B. F., Moussard, C., Verney, P., Hitmi, A., & Bollinger, J. (2008). Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environmental Pollution, 153, 555–563.

    Article  CAS  Google Scholar 

  • Jiang, L., Yang, X., & He, Z. (2004). Growth response and phytoextraction of copper at different levels in soil by Elsholtzia splendens. Chemosphere, 55, 1179–1187.

    Article  CAS  Google Scholar 

  • Ke, L., Wong, T., Wong, A., Wong, Y., & Tam, N. (2003). Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere, 52, 1581–1591.

    Article  CAS  Google Scholar 

  • Kim, S., & Li, I. (2010). Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil. Bulletin in Environmental Contamination and Toxicology, 84, 255–259.

    Article  CAS  Google Scholar 

  • Lee, J., Reeves, R., Brook, R., & Jaffre, T. (1977). Isolation and identification of a citrate-complex of nickel from nickel accumulating plants. Phytochemistry, 16, 1502–1505.

    Google Scholar 

  • Liphadzi, M., Kirkaham, M., Mankin, K., & Paulsen, G. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage sludge farm. Plant and Soil, 257, 171–182.

    Article  CAS  Google Scholar 

  • Luo, C., Shen, Z., & Li, X. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  CAS  Google Scholar 

  • Marchiol, L., Assolari, S., Sacco, P., & Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, 132, 21–27.

    Article  CAS  Google Scholar 

  • Marschner, B., Henke, U., & Wessolek, G. (1995). Effects of meliorative additives on the adsorption and binding forms of heavy metals in a contaminated top soil from a former sewage farm. Zeitschrift für Pflanzenernährung und Bodenkunde, 158, 9–14.

    Article  CAS  Google Scholar 

  • Nowack, B., Schullin, R., & Robinson, B. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science and Technology, 40, 5335–5232.

    Article  Google Scholar 

  • Romkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.

    Article  CAS  Google Scholar 

  • Schill, R., Gorlitz, H., & Kohler, H. (2003). Laboratory simulation of a mining accident: acute toxicity hsc/hsp70 response, and recovery from stress in Gammarus fossarum (Crustacea, Amphipoda) exposed to a pulse of cadmium. Biometals, 16, 391–401.

    Article  CAS  Google Scholar 

  • Shi, Z., Tao, S., Pan, B., Fan, W., He, X., Zuo, Q., Wu, S., Li, B., Cao, J., Liu, W., Xu, F., Wang, X., Shen, W., & Wong, P. (2005). Contamination of rivers in Tianjin, China by polycyclic hydrocarbons. Environmental Pollution, 134, 97–111.

    Article  CAS  Google Scholar 

  • Sinhal, V., Srivastava, A., & Singh, V. (2010). EDTA and citric acid-mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). Journal of Environmental Biology, 31, 255–259.

    CAS  Google Scholar 

  • Ting, W., Yuan, S., Wu, J., & Chang, B. (2011). Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. International Biodeterioration and Biodegradation, 65, 238–242.

    Article  CAS  Google Scholar 

  • Turgut, C., Pepe, M., & Cutright, T. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annus. Environmental Pollution, 131, 147–154.

    Article  CAS  Google Scholar 

  • Vassil, A., Kapulnik, Y., Raskin, I., & Salt, D. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Wang, M., Chen, Y., Chen, S., Chien, S., & Sunkara, S. (2012). Phytoremediation of pyrene-contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere, 87, 217–225.

    Article  CAS  Google Scholar 

  • Wasay, S., Barrington, S., & Tokunaga, S. (1998). Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 19, 369–379.

    Article  CAS  Google Scholar 

  • Wei, X., Sang, L., Chen, J., Zhu, Y., & Zhang, Y. (2009). The effects of LMWOAs on biodegradation of multicomponent PAHs in aqueous solution using dual-wavelength fluorimetry. Environmental Pollution, 157, 3150–3157.

    Article  CAS  Google Scholar 

  • Wenger, K., Gupter, S., Furrer, G., & Schulin, R. (2003). Heavy metals in the environment: the role of nitrilotriacetate in copper uptake by tobacco. Journal of Environmental Quality, 32, 1669–1678.

    Article  CAS  Google Scholar 

  • Wenzel, W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere, 50, 819–822.

    Article  Google Scholar 

  • Wu, L., Luo, Y., Christie, P., & Wong, M. (2003). Effect of EDTA and low molecular weight organic acids in soil solution properties of a heavy metal polluted soil. Chemosphere, 50, 819–822.

    Article  CAS  Google Scholar 

  • Wu, L., Luo, Y., Xing, X., & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems and Environment, 102, 307–318.

    Article  CAS  Google Scholar 

  • Wuana, R., & Okieimen, F. (2010). Phytoremediation potential of maize (Zea mays L.). A review. African Journal of General Agriculture, 6, 275–287.

    Google Scholar 

  • Yan, J., Wang, I., Fu, P., & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research, 557, 99–108.

    Article  CAS  Google Scholar 

  • Yang, C., Zhou, Q., Wei, S., Hu, Y., & Bao, Y. (2011). Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solanum nigrum L. International Journal of Phytoremediation, 13, 818–833.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chibuike Chigbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigbo, C., Batty, L. Chelate-Assisted Phytoremediation of Cu-Pyrene-Contaminated Soil Using Z. mays . Water Air Soil Pollut 226, 74 (2015). https://doi.org/10.1007/s11270-014-2277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2277-2

Keywords

Navigation