Skip to main content
Log in

Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 17 November 2013

Abstract

In the present study, cadmium and lead concentrations were compared in barnacles, ghost shrimps, polychaetes, bivalves, and sediment from ten different locations along the intertidal zone of the Persian Gulf and the Gulf of Oman. The results revealed significant differences in the heavy metal concentrations between the organisms with barnacles showing, by far, the highest metal concentrations. The bioaccumulation factor of Cd in different animals follows this pattern with barnacles > bivalves > polychaetes > ghost shrimps, while the pattern for Pb was barnacles > polychaetes > bivalves > ghost shrimps. In most of the stations, sediments showed the lowest lead and cadmium concentrations. Therefore, it is concluded that barnacles with Pb concentrations between 0.17 and 2,016.1 μg/g and Cd concentrations ranging from 0.4 to 147.1 μg/g are the best organisms to be employed in monitoring programs designed to assess pollution with bioavailable metals in the Persian Gulf and the Gulf of Oman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali MHH, Fishar MRA (2005) Accumulation of trace metals in some benthic invertebrate and fish species relevant to their concentration in water and sediment of lake Qarun. Egypt. Egypt J Aquat Res 31:289–301

    CAS  Google Scholar 

  • Augustina M, Machiwa JF (2007) Heavy metal pollution levels in water and oysters, Saccostrea cucullata, from Mzinga Creek and Ras Dege mangrove ecosystems, Tanzania. Afr J Aquat Sci 32(3):235–244

    Article  Google Scholar 

  • Azarbad H, Javanshir Khoi A, Mirvaghefi A, Danekar A, Shapoori M (2010) Biosorption and bioaccumulation of heavy metals by rock oyster. Int Aquat Res 2:61–69

    Google Scholar 

  • Barbaro A, Francescon A, Polo B, Bilio M (1978) Balanus amphitrite (Cirripedia: Thoracica)—a potential indicator of fluoride, copper, lead, chromium and mercury in North Adriatic Lagoons. Mar Biol 46:247–257

    Article  CAS  Google Scholar 

  • Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298

    Article  CAS  Google Scholar 

  • Bettinelli M, Beone GM, Spezia S, Baffib C (2000) Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Anal Chim Acta 424:289–296

    Article  CAS  Google Scholar 

  • Bryan GW, Hummerstone LG (1971) Adaptation of polychaetes Nereis diversicolor to estimate sediments containing high concentrations of heavy metals. 1. General observations and adaptation to copper. J Mar Biol Assoc UK 51:845–863

    Article  CAS  Google Scholar 

  • Bryan GW, Hummerstone LG (1973) Adaptation of the Polychaete Nereis diversicolor to manganese in estuarine sediments. J Mar Biol Assoc UK 53:859–872

    Article  CAS  Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG (1980) The use of biological indicators of heavy metal contamination in estuaries. Mar biol Ass UK, Plymouth

    Google Scholar 

  • Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardone G, Di Geronimo SI, Punturo R, Ottonello D (2006) Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere 64:1167–1176

    Article  CAS  Google Scholar 

  • Einollahi Peer F, Safahieh A, Dadollahi Sohrab A, Pakzad Tochaii S (2010) Heavy metal concentrations in rock oyster Saccostrea cucullata from Iranian costs of the Oman Sea. Trakia J Sci 8:79–86

    Google Scholar 

  • Eisler R (1985) Cadmium hazards to fish, wildlife, and invertebrates: a synoptic review, 1985, Biological Report (Contaminant Hazards Reviews), 85 (1.2): 46 pages

  • Eisler R (1988) Lead hazards to fish, wildlife, and invertebrates: a synoptic review. U. S. Fish and Wildlife Service. Biological Report 85 (1.14)

  • Eriksen KDH, Andersen T, Gray JS, Stenersen J, Andersen RA (1989) Metal - binding in polychaetes: quantitative and qualitative studies of five species. Mar Environ Res 28:167–171

    Google Scholar 

  • Esen C, Balci A (2008) Application of microwave-assisted digestion to trace heavy metal determination in sea sediment sample. Hacet J Biol Chem 36(2):123–128

    Google Scholar 

  • Etim L, Akpan ER, Muller P (1991) Temporal trends in heavy metal concentrations in the clam Egeria radiata (Bivalvia: Tellinacea: Donacidae) from the Cross River, Nigeria. Reu Hydrobiol trop 24(4):327–333

    Google Scholar 

  • Gerhardsson L (2004) Lead. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. Wiley, Weinheim, pp 879–900

    Chapter  Google Scholar 

  • Griffis RB, Suchanek TH (1991) A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Mar Ecol Prog 79:171–183

    Article  Google Scholar 

  • Heidarieh M, Ghannadi Maragheh M, Azizi Shamami M, Behgar M, Ziaei F, Akbari Z (2013) Evaluate of heavy metal concentration in shrimp (Penaeus semisulcatus) and crab (Portunus pelagicus) with INAA method. SpringerPlus 2:72

    Article  Google Scholar 

  • Herber RFM (2004) Cadmium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. Wiley, Weinheim, pp 689–708

    Chapter  Google Scholar 

  • Karbassi AR (1998) Geochemistry of Ni, Zn, Cu, Pb, Co, Cd, V, Mn, Fe, Al & Ca in sediments of North Western part of the Persian Gulf. Int J Env Stud 54:205–212

    Article  CAS  Google Scholar 

  • Klerks L, Felder DL, Strasser K, Swarzenski PW (2007) Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL. Mar Chem 104:17–26

    Article  CAS  Google Scholar 

  • Nejmeddine A, Dhainaut-Courtois N, Baert JL, Sautière P, Fournet B, Boulenguer P (1988) Purification and characterization of a cadmium-binding protein from Nereis diversicolor (Annelida polychaeta). Comp Biochem Physiol 89C:321–326

    CAS  Google Scholar 

  • Paez-Osuna F, Ruiz-Fernfindez R (1993) Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environ Poll 87:243–247

    Article  Google Scholar 

  • Philips DJH, Rainbow PS (1988) Barnacles and mussels as biomonitors of trace elements: a comparative study. Mar Ecol Prog 49:83–93

    Article  Google Scholar 

  • Pourang N, Dennis JH (2005) Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of metallothionein in their redistribution. Environ Int 31(3):325–341

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Poll 120:49507

    Article  Google Scholar 

  • Rainbow PS (2006) Biomonitoring of trace metals in estuarine and marine environments. Aust J Ecotoxicol 12:107–122

    CAS  Google Scholar 

  • Rainbow PS, Philips DJH (1993) Cosmopolitan biomonitors of trace metals. Mar Poll Bull 26:593–601

    Article  CAS  Google Scholar 

  • Rainbow PS, Scott AG (1979) Two heavy metal binding proteins in the midgut gland of the crab Carcinus maenas. Mar Biol 55:143–150

    Article  CAS  Google Scholar 

  • Rainbow PS, Smith BD (1992) Biomonitoring of Hong Kong coastal trace metals by barnacles, 1986–1989. In: Morton B (ed) The marine flora and fauna of Hong Kong and Southern China III. Proceedings of the fourth international marine biological workshop: the marine flora and fauna of Hong Kong and Southern China, Hong Kong. Hong Kong University Press, Hong Kong, pp 585–597

    Google Scholar 

  • Raissy M, Ansari M, Rahimi E (2011) Mercury, arsenic, cadmium and lead in lobster (Panulirus homarus) from the Persian Gulf. Tocicol Ind Health 27(7):655–659

    Article  CAS  Google Scholar 

  • Reis PA, Salgado MA, Vasconcelos V (2011) Barnacles as biomonitors of metal contamination in coastal waters. Estuar Coast Shelf Sci 93(4):269–278

    Article  CAS  Google Scholar 

  • Reish DJ, Gerlinger TV (1997) A review of the toxicological studies with polychaetous annelids. B Mar Sci 60:584–607

    Google Scholar 

  • Saiz-Salinas JI, Frances-Zubillaga G (1997) Nereis diversicolor: an unreliable biomonitor of metal contamination in the Ría de Bilbao (Spain). Mar Ecol 18:113–125

    Article  CAS  Google Scholar 

  • Shahdadi A (2007) Taxonomy and biogeography of intertidal barnacles (Crustacea, Cirripedia) of the Persian Gulf and the Gulf of Oman. Unpublished M.Sc. thesis, University of Tehran

  • Shahdadi A, Sari A (2011) Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman, Iran. J Mar Biol Assoc UK 91(3):745–753

    Article  Google Scholar 

  • Silva CAR, Smith BD, Rainbow PS (2006) Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Mar Environ Res 61:439–455

    Article  CAS  Google Scholar 

  • Singer C, Zimmermann S, Sures B (2005) Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures. Aqua Toxicol 75:65–75

    Article  CAS  Google Scholar 

  • Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol 20:170–177

    Article  CAS  Google Scholar 

  • Sures B, Siddall R (1999) Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp Parasitol 93:66–72

    Article  CAS  Google Scholar 

  • Walker G, Rainbow PS, Foster P, Crisp DJ (1975) Barnacles: possible indicators of zinc pollution? Mar Biol 30:57–65

    Article  CAS  Google Scholar 

  • White SL, Rainbow PS (1984) Zinc flux in Palaemon elegans (Crustacea: Decapoda): moulting, individual variation and tissue distribution. Mar Ecol Prog 19:153–166

    Article  CAS  Google Scholar 

  • Zorita I, Zarragoitia M, Soto M, Gajaraville P (2006) Biomarkers in mussels from a copper site gradient (Visnes, Norway) an integrated biochemical, histochemical and histological study. Aqua Toxicol 78:109–116

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Environment of Iran and the University of Tehran for financial support and Mr. Abbas Kazemi for his help during the specimen collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malek.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amoozadeh, E., Malek, M., Rashidinejad, R. et al. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res 21, 2386–2395 (2014). https://doi.org/10.1007/s11356-013-1890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1890-8

Keywords

Navigation