Skip to main content

Advertisement

Log in

Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L−1; Zn = 5.00 μg L−1; Pb = 0.03 μg L−1; Cd = 0.05 μg L−1; Hg = 0.05 μg L−1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahumada, R. (1992). Patrones de distribución espacial de Cr, Ni, Cu, Zn, Cd, y Pb en sedimentos superficiales de la Bahía San Vicente, Chile. Revista de Biología Marina, 27(2), 265–282.

    Google Scholar 

  • Ahumada, R., Rudolph, A., Madariaga, S., & Carrasco, F. (1989). Descripción de las condiciones oceanográficas de Bahía San Vicente y antecedentes sobre efectos de la contaminación. Revista de Biología Pesquera, 18, 37–52.

    Google Scholar 

  • Almela, C., Clemente, M., Vélez, D., & Montoro, R. (2006). Total arsenic, inorganic, lead and cadmium contents in edible seaweed sold in Spain. Food and Chemical Toxicology, 44, 1901–1908.

    Article  CAS  Google Scholar 

  • Anderson, B., & Hunt, W. (1988). Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage effluent using microscopic stages of giant kelp Macrocystis pyrifera (Agardh): a preliminary report. Marine Environmental Research, 26, 113–134.

    Article  CAS  Google Scholar 

  • Astorga-España, M., Calisto-Ulloa, N., & Guerrero, S. (2008). Baseline concentrations of trace metals in macroalgae from the strait of Magellan, Chile. Bulletin of Environmental Contamination and Toxicology, 80, 97–101.

    Article  Google Scholar 

  • Bryan, G. W. (1976). Heavy metal contamination in the sea. In R. Johnston (Ed.), Marine Pollution (pp. 185–302). New York: Academic Press.

    Google Scholar 

  • Bryan, G. W., & Hummerstone, L. G. (1973). Brown seaweed as an indicator of heavy metals in estuaries in south-west England. Journal of the Marine Biological Association of the United Kingdom, 53, 705–720.

    Article  CAS  Google Scholar 

  • Burger, J., Gochfeld, M., Kosson, D. S., Powers, C. W., Jewett, S., Friedlander, B., Chenelot, H., Volz, C. D., & Jeitner, C. (2006). Radionuclides in marine macroalgae from Amchitka and Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring. Journal of Environmental Radioactivity, 91(1–2), 27–40.

    Article  CAS  Google Scholar 

  • Burton, J. D., & Statham, P. J. (1990). Trace metals in seawater. In P. S. Rainbow & R. W. Furness (Eds.), Heavy Metals in the Marine Environment (pp. 6–24). Boca Raton: CRC Press.

    Google Scholar 

  • Collén, J., Pinto, E., Pedersen, M., & Colepicolo, P. (2003). Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutants metals. Archives of Environmental Contamination and Toxicology, 45, 337–342.

    Article  Google Scholar 

  • CPPS/PNUMA/COI/CEPIS(OPS). (1989). Taller de Trabajo CPPS/PNUMA/COI/CEPIS(OPS) sobre eutrofización de las aguas costeras del pacifico sudeste y problemas relacionados. Suplemento al Informe del Taller; Conferencias. Comisión Permanente del Pacífico Sur (Ed). Bogotá, Colombia, 298pp.

  • Cullinane de Carvalho, R. P., Chong, K. H., & Volesky, B. (1995). Evaluation of the Cd, Cu, and Zn biosorption in two-metal systems using an algal biosorbent. Biotechnology Progress, 11, 39–44.

    Article  Google Scholar 

  • Cullinane, T. M., & Whelan, P. M. (1987). Uses of seaweeds as biomonitors of zinc levels in Cork Harbour, Ireland. In: Proceeding of the Twelfth International Seaweed Symposium held in Sao Paulo, Brazil. Hydrobiologia, 151(152), 285–290.

    Article  Google Scholar 

  • Dhargalkar, V. K., & Verlecar, X. N. (2009). Southern Ocean seaweeds: a resource for exploration in food and drugs. Aquaculture, 287, 229–242.

    Article  CAS  Google Scholar 

  • Díaz, O., Encina, F., Chuecas, L., Becerra, J., Cabello, J., Figueroa, A., & Muñoz, F. (2001). Influencia de parámetros estacionales, espaciales, biológicos y ambientales en la bioacumulación de mercurio total y metilmercurio en Tagelus dombeii. Revista de Biología Marina y Oceanografía, 36(1), 15–29.

    Article  Google Scholar 

  • Díaz, O., Encina, F., Recabarren, E., Del Valle, S. R., Montes, S., & Figueroa, A. (2008). Estudio sobre la concentración de arsénico, mercurio, plomo y fenantreno en la macha (Mesodesma donacium). Implicancias toxicológicas y alimentarias. Revista Chilena de Nutricion, 35(1), 53–60.

    Google Scholar 

  • Díaz, O., Tapia, Y., Muñoz, O., Montoro, R., Vélez, D., & Almela, C. (2012). Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food and Chemical Toxicology, 50(3–4), 744–749.

    Article  Google Scholar 

  • Encina, F., Chuecas, L., & Díaz, O. (1995). Metodología analítica base para la determinación de metales pesados en macroalgas. In K. Alveal, E. Ferrario, E. de Oliveira, & E. Sar (Eds.), Manual de Métodos Ficológicos (pp. 763–777). Concepción: Universidad de Concepción.

    Google Scholar 

  • Hannach, G., & Santelices, B. (1985). Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Marine Ecology Progress Series, 22, 291–303.

    Article  Google Scholar 

  • Jeon, C., Park, J. Y., & Yoo, Y. J. (2002). Characteristics of metal removal using carboxylated alginic acid. Water Research, 36(7), 1814–1824.

    Article  CAS  Google Scholar 

  • Leal, M. C. F., Vasconcelos, M. T., Sousa-Pinto, I., & Cabra, J. P. S. (1997). Biomonitoring with benthic macroalgae and direct assay of heavy metals in seawater of the Oporto coast (Northwest Portugal). Marine Pollution Bulletin, 34(12), 1006–1015.

    Article  CAS  Google Scholar 

  • Lobban, C. S., Harrison, P. J., & Duncan, M. J. (1985). The physiological ecology of seaweeds. New York: Cambridge University Press 242pp.

    Google Scholar 

  • Montgomery, D. (1984). Design and analysis of experiments (2nd ed.). New York: John Wiley & Sons Inc. 538pp.

    Google Scholar 

  • Moreda-Piñeiro, J., Alonso-Rodríguez, E., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Moreda-Piñeiro, A., & Bermejo-Barrera, P. (2007). Development of a new simple pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Analytica Chimica Acta, 598(1), 95–102.

    Article  Google Scholar 

  • Myklestad, S., Eide, I., & Melsom, S. (1978). Exchange of heavy metals in Ascophyllum nodosum (L.) Le Jol. in situ by means of transplanting experiments. Environmental Pollution, 16(4), 277–284.

    Article  CAS  Google Scholar 

  • Nimptsch, J., Wunderlin, D. A., Dollan, A., & Pflugmacher, S. (2005). Antioxidant and biotransformation enzymes in Myriophyllum quitense as biomarkers of heavy metal exposure and eutrophication in Suquia River basin (Cordoba, Argentina). Chemosphere, 61(2), 147–157.

    Article  CAS  Google Scholar 

  • Pai, S. (1988). Pre-concentration efficiency of chelex-100 resin for heavy metals in seawater. Part 2. Distribution of heavy metals on a Chelex-100 column and optimization of the column efficiency by a plate simulation method. Analytica Chimica Acta, 211, 271–280.

    Article  CAS  Google Scholar 

  • Palma, M., Gonzalez, F., Romo, H., Ruiz, E., & Fuentealba, C. (2007). Contamination effects on genetic of Mazzaella laminaroides (Bory) Fredericq (Gigartinales, Rodophyta) on bays. Gayana Botanica, 64(1), 24–32.

    Article  Google Scholar 

  • Phillips, D. J. (1990). Use of macroalgae and invertebrates as monitors of metals levels in estuaries and coastal waters. In P. S. Rainbow & R. W. Furness (Eds.), Heavy Metals in the Marine Environment (pp. 81–99). Boca Raton: CRC Press.

    Google Scholar 

  • Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy metal pollution. Biological Reviews, 56, 99–151.

    Article  CAS  Google Scholar 

  • Rai, U. N., Tripathi, R. D., Vajpayee, P., Jha, V., & Ali, M. B. (2002). Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb. (Makhana). Chemosphere, 46(2), 267–272.

    Article  CAS  Google Scholar 

  • Rönnberg, O., Adjers, K., Ruokolahti, C., & Bondestam, M. (1990). Fucus vesiculosus as an indicator of heavy metal availability in a fish farm recipient in the northern Baltic Sea. Marine Pollution Bulletin, 21, 388–392.

    Article  Google Scholar 

  • Saéz, C. A., Lobos, M., Macaya, E., Oliva, D., Quiroz, W., & Brown, M. (2012). Variation in patterns of metal accumulation in Thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae): Implications for biomonitoring. PLoS One, 7(11), e50170. https://doi.org/10.1371/journal.pone.0050170.

    Article  Google Scholar 

  • Sánchez-Rodríguez, I., Huerta-Díaz, M. A., Choumiline, E., Holguín-Quiñones, O., & Zertuche-Gonzáles, J. A. (2001). Elemental concentration in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environmental Pollution, 114, 145–160.

    Article  Google Scholar 

  • Santelices, B. (1989). Algas Marinas de Chile. Distribución. Ecología, Utilización, Diversidad. Ediciones Universidad Católica de Chile. Santiago, Chile. 399pp.

  • Santelices, B., & Norambuena, R. (1987). A harvesting strategy for Iridaea laminarioides in central Chile. Hydrobiologia, 151(152), 329–333.

    Article  Google Scholar 

  • Shams El-Din, N. G., Mohamedein, L. I., & El-Moselhy, K. M. (2014). Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008–2010. Environmental Monitoring and Assessment, 186, 5865. https://doi.org/10.1007/s10661-014-3825-3.

    Article  CAS  Google Scholar 

  • Sharp, G. J., Samant, H. S., & Vaidya, O. C. (1988). Selected metal levels of commercially valuable seaweeds adjacent to and distant from point sources of contamination in Nova Scotia and New Brunswick. Bulletin of Environmental Contamination and Toxicology, 40, 724–730.

    Article  CAS  Google Scholar 

  • Sunda, W. G., & Huntsman, S. A. (1996). Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnology and Oceanography, 41(3), 373–387.

    Article  CAS  Google Scholar 

  • Thornber, C., Stachowicz, J., & Gaines, S. (2006). Tissue type matters: selective herbivory on different life history stages of an isomorphic alga. Ecology, 87(9), 2255–2263.

    Article  Google Scholar 

  • Vera, C., Lobos, P., & Romo, H. (2008). Gametophyte-sporophyte coalescence in populations of the intertidal carrageenophyte Mazzaella laminariodes (Rhodophyta). Journal of Applied Phycology, 20, 883–887.

    Article  Google Scholar 

  • Westermeier, R., Guaiquil, V., Wenzel, H., Peruzzo, G., & Kohler, K. (1987). Variación de valores calóricos, cenizas, hidratos de carbono, lípidos y proteínas en frondas cistocárpicas y tetraspóricas de Iridaea laminarioides Bory en el Sur de Chile. Medio Ambiente, 8(2), 85–89.

    Google Scholar 

  • Woolston, M. E., Breck, W. G., & Van Loon, G. W. (1982). A sampling study of the brown seaweed, Ascophyllum nodosum as a marine monitor for trace metals. Water Research, 16, 687–691.

    Article  CAS  Google Scholar 

  • Zar, J. (1984). Biostatistical analysis (2nd ed.). Englewood Cliffs: Prentice-Hall Inc 718pp.

    Google Scholar 

  • Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606, 135–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Encina-Montoya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Encina-Montoya, F., Vega-Aguayo, R., Díaz, O. et al. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile. Environ Monit Assess 189, 584 (2017). https://doi.org/10.1007/s10661-017-6297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6297-4

Keywords

Navigation