Skip to main content

Plants Behavior Under Soil Acidity Stress: Insight into Morphophysiological, Biochemical, and Molecular Responses

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Soil pH is a major, variable growth factor in natural and agricultural soils. Although many soils are naturally acidic, agricultural practices industrial processes and mining promote soil acidification. Proton (H+) rhizotoxicity arrested root growth in various plant and exerts its toxic effect by reducing the nutrient availability, disrupting the plasma membrane H+-ATPase activity, disturbing metabolic process, producing reactive oxygen species (ROS), and upsetting the antioxidant defense system. High activity of the H+ in the external growth medium exceeds the ability of the cell to maintain the cytoplasmic pH and stops the normal growth of the plants. Acidic condition in plant growing medium also disrupts the water uptake of plant. Another problem in the acidic soil is associated with phytotoxicity from Al, Mn, and Fe; those can exert detrimental effect on plant growth and development. Although some plant species evolved to survive in areas of low soil pH and can tolerate the acidity of soil, their number is very limited and productivity is very low. On the other hand, the diversity relationship between soil pH and plant is mostly negative, when its evolutionary center any plant species located on high pH soils, that species is more susceptible to acidic pH; hence, this phenomenon should be well considered. However, the mechanism by which the acidity (H+) exerts toxic effect on the plant species is still unclear, and only few researches addressed the effects of external pH change on plants. In addition, how some species can tolerate the low pH demands further researches. Hence, this chapter reviews the mechanism of damage under acidity (H+ rhizotoxicity) stress on plants, and also the recent approaches to improve growth and productivity under acidic condition, from the available literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams F (1984) Crop response to lime in the southern United States. In: Adams F (ed) Soil acidity and liming, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 211–265

    Google Scholar 

  • Anugoolprasert O, Kinoshita S, Naito H, Shimizu M, Ehara H (2012) Effect of low pH on the growth, physiological characteristics and nutrient absorption of sago palm in a hydroponic system. Plant Prod Sci 15:125–131

    CAS  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon M (2013) Aluminum toxicity and tolerance mechanism in cereals and legumes—a review. J Korean Soc Appl Biol Chem 56:1–9

    Google Scholar 

  • Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32:707–711

    PubMed  CAS  Google Scholar 

  • Asrar Z, Khavari-nejad RA, Heidari H (2005) Excess manganese effects on pigments of Mentha spicata at flowering stage. Arch Agron Soil Sci 51:101–107

    CAS  Google Scholar 

  • Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. J Agron Crop Sci 195:66–76

    CAS  Google Scholar 

  • Ayeni O, Kambizi L, Fatoki O, Olatunji O (2014) Risk assessment of wetland under aluminium and iron toxicities: a review. Aquat Ecosyst Health Manag 17:122–128

    CAS  Google Scholar 

  • Bahrami H, Razmjoo J, Ostadi JA (2012) Effect of drought stress on germination and seedling growth of sesame cultivars (Sesamum indicum L.). Int J Agric Sci 2:423–428

    Google Scholar 

  • Bakos F, Darkó É, Ascough G, Gáspár L, Ambrus H, Barnabás B (2008) A cytological study on aluminium-treated wheat anther cultures resulting in plants with increased Al tolerance. Plant Breed 127:235–240

    Google Scholar 

  • Bartoli G, Bottega S, Forino LMC, Ciccarelli D, Spano C (2014) Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field. C R Biol 337:101–110

    PubMed  Google Scholar 

  • Batty LC, Younger PL (2003) Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) Trin ex. Steudel. Ann Bot 92:801–806

    PubMed  PubMed Central  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    CAS  Google Scholar 

  • Belachew KY, Stoddard FL (2017) Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses. PeerJ 5:e2963. https://doi.org/10.7717/peerj.2963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellani LM, Rinallo C, Muccifora S, Gori P (1997) Effects of simulated acid rain on pollen physiology and ultrastructure in the apple. Environ Pollut 95:357–362

    PubMed  CAS  Google Scholar 

  • Bernel JH, Clark RB (1998) Growth traits among sorghum genotypes in response to Al3+. J Plant Nutr 21:297–305

    Google Scholar 

  • Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1:91–104

    Google Scholar 

  • Blossfeld S, Gansert D (2007) A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ 30:176–186

    PubMed  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    PubMed  CAS  Google Scholar 

  • Bona L, Baligar VC, Wright RJ (1995) Soil acidity effects on agribotanical traits of durum and common wheat. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Developments in plant and soil sciences, vol 64. Springer, Dordrecht, pp 425–428

    Google Scholar 

  • Borlaug NE, Dowswell CR (1997) The acid lands: one of agriculture’s last frontiers. In: Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Sociedade Brasileira de CiEncia do Solo, Campinas, pp 5–15

    Google Scholar 

  • Bouma D, Dowling EJ, David DJ (1981) Relations between plant aluminium content and the growth of lucerne and subterranean clover: their usefulness in the detection of aluminium toxicities. Aust J Exp Agric 21:311–317

    Google Scholar 

  • Bouman OT, Curtin D, Campbell CA, Biederbeck VO, Ukrainetz H (1995) Soil acidification from long-term use of anhydrous ammonia and urea. Soil Sci Soc Am J 59:1488–1494

    CAS  Google Scholar 

  • Buerkert AKG, de la Piedra CR, Munns DN (1990) Soil acidity and liming effects on stand, nodulation, and yield of common bean. Agron J 82:749–754

    CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    CAS  Google Scholar 

  • Caires EF, Corrêa JCL, Churka S, Barth G, Garbuio FJ (2006) Surface application of lime ameliorates subsoil acidity and improves root growth and yield of wheat in an acid soil under no-till system. Sci Agric (Piracicaba Braz) 63:502–509

    CAS  Google Scholar 

  • Caires EF, Garbuio FJ, Churka S, Barth G, Corrêa JCL (2008) Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. Eur J Agron 28:57–64

    CAS  Google Scholar 

  • Caires EF, Joris HAW, Churka S (2011) Long-term effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manag 27:45–53

    Google Scholar 

  • Castro GSA, Crusciol CAC (2013) Effects of superficial liming and silicate application on soil fertility and crop yield under rotation. Geoderma 195 & 196:234–242

    Google Scholar 

  • Cha-Um S, Supaibulwattana K, Kirdmanee C (2009) Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Sci 16:274–282

    Google Scholar 

  • Chehregani A, Malayeri BE, Kavianpour F, Yazdi HL (2006) Effect of acid rain on the development, structure and viability of pollen grains in bean plants (Phaseolus vulgaris). Pak J Biol Sci 9:1033–1036

    Google Scholar 

  • Chen D, Lan Z, Bai X, Grace JB, Bai Y (2013a) Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. J Ecol 101:1322–1334

    CAS  Google Scholar 

  • Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013b) Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol Biochem 64:41–51

    PubMed  CAS  Google Scholar 

  • Clark JS, Ji Y (1995) Fecundity and dispersal in plant populations: implications for structure and diversity. Am Nat 146:72–111

    Google Scholar 

  • Cleavitt N (2001) Disentangling moss species limitations: the role of physiologically based substrate specificity for six species occurring on substrates with varying pH and percent organic matter. Bryologist 104:59–68

    Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Ann Rev Plant Physiol Plant Mol Biol 50:391–417

    CAS  Google Scholar 

  • Cox RM (1983) Sensitivity of forest plant reproduction to long range transported air pollutants: in vitro sensitivity of pollen to simulated acid rain. New Phytol 95:269–276

    CAS  Google Scholar 

  • Cox FR, Lins IDG (1984) A phosphorus soil test interpretation for corn grown on acid soils varying in crystalline clay content. Commun Soil Sci Plant Anal 15:1481–1491

    CAS  Google Scholar 

  • Crawford NM, Forde BG (2002) Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book 1:e0011. https://doi.org/10.1199/tab.0011

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvikrová M, Gemperlová L, Martincová O, Vanková R (2013) Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiol Biochem 73:7–15

    PubMed  Google Scholar 

  • de Almeida NM, de Almeida AF, Mangabeira PAO, Ahnert D, Reis GSM, de Castro AV (2015) Molecular, biochemical, morphological and ultrastructural responses of cacao seedlings to aluminum (Al3+) toxicity. Acta Physiol Plant 37:1–17

    Google Scholar 

  • de Vries W, Dobbertin M, Solberg S, Dobben H, Schaub M (2014) Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil 380:1–45

    Google Scholar 

  • Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27:513–529

    PubMed  CAS  Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67:702–706

    CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley Hordeum vulgare L. expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400

    PubMed  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    CAS  Google Scholar 

  • Deska J, Jankowski K, Bombik A, Jankowska J (2011) Effect of growing medium pH on germination and initial development of some grassland plants. Acta Sci Pol 10:45–56

    Google Scholar 

  • Dyhr-Jensen K, Brix H (1996) Effects of pH on ammonium uptake by Typha latifolia L. Plant Cell Environ 19:1431–1436

    CAS  Google Scholar 

  • Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM (2017) The evolution of calcium-based signalling in plants. Curr Biol 27:R667–R679

    PubMed  CAS  Google Scholar 

  • Edge CP, Bell SA, Ashenden TW (1994) Contrasting growth responses of herbaceous species to acidic fogs. Agric Ecosyst Environ 51:293–299

    Google Scholar 

  • Edmeades DC, Blarney FPC, Farina MPW (1995) Techniques for assessing plant responses on acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Developments in plant and soil sciences, vol 64. Springer, Dordrecht, pp 221–233

    Google Scholar 

  • Edmonds RL (2012) Patterns of China’s lost harmony: a survey of the country’s environmental degradation and protection. Routledge, Newyork

    Google Scholar 

  • Egerton-Warbuton LM, Griffin BJ, Lamont BB (1993) Pollen̵1pistil interactions in Eucalyptus calophylla provide no evidence of a selection mechanism for aluminium tolerance. Aust J Bot 41:541–552

    Google Scholar 

  • Eswaran H, Almaraz R, van den Berg E, Reich P (1997) An assessment of the soil resources of Africa in relation to productivity. Geoderma 77:1–18

    Google Scholar 

  • Evans LS, Lewin KF, Patti MJ, Cunningham EA (1983) Productivity of field-grown soybeans exposed to simulated acidic rain. New Phytol 93:377–388

    CAS  Google Scholar 

  • Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the central European flora? Folia Geobot 38:357–366

    Google Scholar 

  • Fageria NK, Baligar VC (2001) Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Commun Soil Sci Plant Anal 32:1303–1319

    CAS  Google Scholar 

  • Fageria NK, Castro EM, Baliga VC (2004) Response of upland rice genotypes to soil acidity. In: Wilson MJ, He Z, Yang X (eds) The red soils of China: their nature, management and utilization. Springer, New York, pp 219–237

    Google Scholar 

  • Fageria NK, Moreira A, Castro C, Moraes MF (2013) Optimal acidity indices for soybean production in Brazilian Oxisols. Commun Soil Sci Plant Anal 44:2941–2951

    CAS  Google Scholar 

  • Farias TP, Trochmann A, Soares BL, Maringá FMS (2016) Rhizobia inoculation and liming increase cowpea productivity in Maranhão state. Acta Sci Agron 38:387–395

    Google Scholar 

  • Felle HH (1988) Short term pH regulation in plants. Physiol Plant 74:583–591

    CAS  Google Scholar 

  • Felle HH (1998) The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes: aspects of regulation. J Exp Bot 49:987–995

    CAS  Google Scholar 

  • Felle HH, Waller F, Molitor A, Kogel KH (2009) The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection. Mol Plant-Microbe Interact 22:1179–1185

    PubMed  CAS  Google Scholar 

  • Fernando DR, Marshall AT, Lynch JP (2016) Foliar nutrient distribution patterns in sympatric maple species reflect contrasting sensitivity to excess manganese. PLoS ONE 11(7):e0157702. http://doi.org/10.1371/journal.pone.0157702

    PubMed  PubMed Central  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    PubMed  CAS  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. In: Adams F (ed) Soil acidity and liming, 2nd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 57–97

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    CAS  Google Scholar 

  • Gabara B, Sklodowska M, Wyrwicka A, Glinska S, Capinska M (2003) Changes in the ultra-structure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicum esculentum Mill. leaves sprayed with acid rain. Plant Sci 164:507–516

    CAS  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Oliveira A, Benito C, Prieto P, Menezes RA, Rodrigues-Pousada C, Guedes-Pinto H, Martins-Lopes P (2013) Molecular characterization of TaSTOPI homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134. https://doi.org/10.1186/1471-2229-13-134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Oliveira AL, Chander S, Barcelo J, Poschenrieder C. (2016) Aluminium Stress in Crop Plants. In: Yadav P, Kumar S, Jain V (eds) Recent Advances in Plant Stress Physiology, Daya Publishing House, New Delhi, pp 237–263

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    PubMed  CAS  Google Scholar 

  • Ginocchio R, de la Fuente LM, Sanchez P, Bustamante E, Silva Y, Urrestarazu P, Rodriguez PH (2009) Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes. Environ Toxicol Chem 28:2069–2081

    PubMed  CAS  Google Scholar 

  • Gordana B, Grljusic S, Rozman V, Lukic D, Lackovic R, Novoselovic D (2007) Seed age and pH of water solution effects on field pea (Pisum sativum L.) germination. Not Bot Hort Agrobot Cluj 35:20–26

    Google Scholar 

  • Goulding KWT (2016) Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag 32:390–399

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and root cortical cells in proton-and Al-stressed maize varieties. Plant Physiol 113:595–602

    PubMed  PubMed Central  Google Scholar 

  • Guo TR, Yao PC, Zhang ZD, Wang JJ, Wang M (2012) Devolvement of antioxidative defense system in rice growing seedlings exposed to aluminum toxicity and phosphorus deficiency. Rice Sci 19:179–185

    Google Scholar 

  • Gupta N, Gaurav SJ, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37

    Google Scholar 

  • Hai-yang H, Chun-qin C, Qiang-qiang D, Zhi-bing W (2013) Effect of pH value on seed germination and seedling growth of Betula luminifera. J Southwest Forest Univ 5:006

    Google Scholar 

  • Haling RE, Richardson AE, Culvenor RA, Lambers H, Simpson RJ (2010) Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil 335:457–468

    CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhuyan MHMB, Oku H, Fujita M (2018) Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiol Biochem 126:173–186

    PubMed  CAS  Google Scholar 

  • Haug A, Foy CE (1984) Molecular aspects of aluminum toxicity. Crit Rev Plant Sci 1:345–373

    CAS  Google Scholar 

  • Havlin JL, Beaton SL, Tisdale SL, Nelson WL (2005) In: Havlin J (ed) Soil fertility and fertilizers: an introduction to nutrient management, vol 515. Pearson Prentice Hall, Upper Saddle River, pp 97–141

    Google Scholar 

  • He G, Zhang J, Hu Z, Wu J (2011) Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiol Plant 33:1285–1292

    CAS  Google Scholar 

  • Helyar KR, Porter WM (1989) Soil acidification, its measurement and the processes involved. In: Robson AD (ed) Soil acidity and plant growth. Academic Press, New York, pp 61–102

    Google Scholar 

  • Hernandez A, Francisco J, Corpas FJ, Gomez GM, del Rio LA, Sevilla F (1993) Salt induced oxidative stresses mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    CAS  Google Scholar 

  • Hiscox JD, Isrealstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103:9738–9743

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hong E, Ketterings Q, Mcbride M (2010) Manganese. Agronomy fact sheet series–fact sheet 49. Nutrient Management Spear Program, Field Crop Extension, College of Agriculture and Life Sciences, Cornell University Cooperative Extension, Ithaca. http://nmsp.cals.cornell.edu. Accessed 30 Sept 2018

  • Huang YL, Yang S, Long GX, Zhao ZK, Li XF, Gu MH (2016) Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China. PLoS One 11(3):e0148956. https://doi.org/10.1371/journal.pone.0148956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikka T, Kobayashi Y, luchi S, Sakurai N, Shibata D, Kobayashi M, Koyama H (2007) Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors. Theor Appl Genet 115:709–719

    PubMed  CAS  Google Scholar 

  • Ingerpuu N (2002) Bryophyte diversity and vascular plants. Tartu University Press, Tartu

    Google Scholar 

  • Iuchi S, Koyama H, luchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905

    PubMed  PubMed Central  Google Scholar 

  • Ivanov Y, Savochkin Y, Kuznetsov V (2013) Effect of mineral composition and medium pH on scots pine tolerance to toxic effect of zinc ions. Russ J Plant Physiol 60:260–269

    CAS  Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jin J, Jiang H, Zhang X, Wang Y, Song X (2013) Detecting the responses of Masson pine to acid stress using hyperspectral and multispectral remote sensing. Int J Remote Sens 34:7340–7355

    Google Scholar 

  • Joris HAW, Caires EF, Bini AR, Scharr DA, Haliski A (2013) Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant Soil 365:409–424

    CAS  Google Scholar 

  • Jovanovic Z, Djalovic I, Komljenovic I, Kovacevic V, Cvijovic M (2006) Influences of liming on vertisol properties and yields of the field crops. Cereal Res Commun 34:517–520

    Google Scholar 

  • Jovanovic Z, Djalovic I, Tolimir M, Cvijovic M (2007) Influence of growing sistem and NPK fertilization on maize yield on pseudogley of Central Serbia. Cereal Res Commun 35:1325–1329

    Google Scholar 

  • Kalir A, Poljakoff-Mayber A (1981) Changes in activity of malate dehydrogenase, catalase, peroxidase and superoxide dimutase in the leaves of Halimione portulacoides (L.). Allen exposed to high sodium chloride concentrations. Ann Bot 47:75–85

    CAS  Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2004) Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiol 24:1173–1180. https://doi.org/10.1093/treephys/24.10.1173

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Seo Y, Futakuchi K, Vijarnsorn P, Ishii R (2011) Effect of aluminum toxicity on flowering time and grain yield on rice genotypes differing in al-tolerance. J Crop Sci Biotechnol 14:305–309

    Google Scholar 

  • Kapczyńska A, Magdziarz K (2015) Influence of substrate pH on the growth and flowering of Mandevilla Lindl. Sundaville pretty red. Folia Hort 27:79–83

    Google Scholar 

  • Kariuki SK, Zhang H, Schroder JL, Edwards J, Payton M, Carver BF, Raun WR, Krenzer EG (2007) Hard red winter wheat cultivar responses to a pH and aluminum concentration gradient. Agron J 99:88–98

    CAS  Google Scholar 

  • Kasai M, Sasaki M, Yamamoto Y, Matsumoto H (1992) Aluminum stress increases K+ efflux and activities of ATP- and PPj-dependent H+ pumps of tonoplast-enriched membrane vesicles from barley roots. Plant Cell Physiol 33:1035–1039

    CAS  Google Scholar 

  • Khabaz-Saberi H, Barker SJ, Rengel Z (2012) Tolerance to ion toxicities enhances wheat (Triticum aestivum L.) grain yield in waterlogged acidic soils. Plant Soil 354:371–381

    CAS  Google Scholar 

  • Kidd PS, Proctor J (2001) Why plants grow poorly on very acid soils: are ecologists missing the obvious? J Exp Bot 52:791–799

    PubMed  CAS  Google Scholar 

  • Kinraide TB (1993) Aluminum enhancement of plant-growth in acid rooting media: a case of reciprocal alleviation of toxicity by 2 toxic cations. Physiol Plant 88:619–625

    PubMed  CAS  Google Scholar 

  • Kinraide TB, Parker DR (1987) Non-phytotoxicity of the aluminum sulfate ion, AlSO4+. Physiol Plant 71:207–212

    CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1994) Al3+-Ca2+ interactions in aluminium rhizotoxicity. II. Evaluating the Ca2+-displacement hypothesis. Planta 192:104–109

    CAS  Google Scholar 

  • Kisinyo PO, Othieno CO, Gudu SO, Okalebo JR, Opala PA, Maghanga JK, Ng’etich WK, Agalo JJ, Opile RW, Kisinyo JA, Ogola BO (2013) Phosphorus sorption and lime requirements of maize growing acids soil of Kenya. Sustain Agric Res 2:116–123

    Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M, Zhao CR, Tanveer T, Ganesan M, Kobayashi M, Koyama H (2014) STOP2 activates transcription of several genes for Al-and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    PubMed  CAS  Google Scholar 

  • Kochian L, Hoekenga OA, Piňeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    PubMed  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminium resistance. Annu Rev Plant Physiol 66:571–598

    CAS  Google Scholar 

  • Kolodziejek J, Patykowski J (2015) Effect of environmental factors on germination and emergence of invasive Rumex confertus in Central Europe. Sci World J 2015:170176. https://doi.org/10.1155/2015/170176

    Article  Google Scholar 

  • Konishi S, Miyamoto S (1983) Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluorine. Plant Cell Physiol 24:857–862

    CAS  Google Scholar 

  • Kooistra E (1967) Femaleness in breeding glasshouse cucumbers. Euphytica 16:1–17

    Google Scholar 

  • Koyama H, Toda T, Yokota S, Zuraida D, Hara T (1995) Effects of aluminium and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol 36:201–205

    CAS  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin–Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    PubMed  CAS  Google Scholar 

  • Krstic D, Djalovic I, Nikezic D, Bjelic D (2012) Aluminium in acid soils: chemistry, toxicity and impact on maize plants. In: Aladjadjiyan A (ed) Food production—approaches, challenges and tasks. InTech, London. https://doi.org/10.5772/33077

    Chapter  Google Scholar 

  • Krug EC, Frink CR (1983) Acid rain on acid soil: a new perspective. Science 221:520–525

    PubMed  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14:1–9

    Google Scholar 

  • Lager I, Andreasson O, Dunbar TL, Andreasson E, Escobar MA, Rasmusson AG (2010) Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant Cell Environ 33:1513–1528

    PubMed  PubMed Central  CAS  Google Scholar 

  • Laghmouchi Y, Belmehdi O, Bouyahya A, Senhaji NS, Abrini J (2017) Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal Agric Biotechnol 10:156–160

    Google Scholar 

  • Lavres J, Malavolta E, Nogueira NL, Moraes MF, Rodrigues A, Lanzoni M, Pereira C (2009) Changes in anatomy and root cell ultrastructure of soybean genotypes under manganese stress. R Bras Ci Solo 33:395–403

    CAS  Google Scholar 

  • Lazof DB, Holland MJ (1999) Evaluation of the aluminium-induced root growth inhibition in isolation from low pH effects in Glycine max, Pisum sativum, and Phaseolus vulgaris. Aust J Plant Physiol 26:147–157

    CAS  Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yun SH (1998) Effect of humidification and hardening treatment on seed germination of rice. Korean J Crop Sci 43:157–160

    Google Scholar 

  • Lefebvre V, Kiani SP, Durand-Tardif M (2009) A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana. Int J Mol Sci 10:3547–3582

    PubMed  PubMed Central  CAS  Google Scholar 

  • Legesse H, Nigussie-Dechassa R, Gebeyehu S, Bultosa G, Mekbib F (2013) Response to soil acidity of common bean genotypes (Phaseolus vulgaris L.) under field conditions at Nedjo, Western Ethiopia. Sci Technol Arts Res J 2:3–15

    Google Scholar 

  • Lidon FC, Teixeira MG (2000) Ricetolerance to excess Mn: implications in the chloroplast lamellae and synthesis of a novel Mnprotein. Plant Physiol Biochem 38:969–978

    CAS  Google Scholar 

  • Lidon FC, Barreiro M, Ramalho J (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244

    PubMed  CAS  Google Scholar 

  • Long A, Zhang J, Yang L-T, Ye X, Lai N-W, Tan L-L, Lin D, Chen L-S (2017) Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front Plant Sci 8:185. https://doi.org/10.3389/fpls.2017.00185

    Article  PubMed  PubMed Central  Google Scholar 

  • Longnecker DE (1974) The influence of high sodium upon fruiting and shedding boll characteristics, fiber properties and yields of two cotton species. Soil Sci 118:387–396

    Google Scholar 

  • Magidow LC, Tommaso AD, Ketterings QM, Mohler CL, Milbrath LR (2013) Emergence and performance of two invasive swallowworts (Vincetoxicum spp.) in contrasting soil types and soil pH. Invasive Plant Sci Manag 6:281–291

    CAS  Google Scholar 

  • Marciano DPRO, Ramos FT, Alvim MN, Magalhaes JR, França MGC (2010) Nitric oxide reduces the stress effects of aluminum on the process of germination and early root growth of rice. J Plant Nutr Soil Sci 173:885–891

    Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Martins N, Gonçalves S, Palma T, Romano A (2011) The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. Plant Cell Tissue Organ Cult 107:113–121

    CAS  Google Scholar 

  • Martins N, Gonçalves S, Romano A (2013a) Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress. Biol Plant 57:325–331

    CAS  Google Scholar 

  • Martins N, Osório ML, Gonçalves S, Osório J, Palma T, Romano (2013b) A Physiological responses of Plantago algarbiensis and P. almogravensis shoots and plantlets to low pH and aluminum stress. Acta Physiol Plant 35:615–625

    CAS  Google Scholar 

  • Meda AR, Furlani PR (2005) Tolerance to aluminum toxicity by tropical leguminous plants used as cover crops. Braz Arch Biol Technol 48:309–317

    CAS  Google Scholar 

  • Menconi MCLM, Sgherri CLM, Pinzino C, Navari-Lzzo F (1995) Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot 46:1123–1130

    CAS  Google Scholar 

  • Michaels H (1910) Action of aqueous solutions of electrolytes on germination. Chem Abstr 4:1984–1985

    Google Scholar 

  • MiransarI M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    CAS  Google Scholar 

  • Misra A, Tyler G (1999) Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil. Ann Bot 84:401–410

    CAS  Google Scholar 

  • Mohanty S, Das AB, Das P, Mohanty P (2004) Effect of a low dose of aluminum on mitotic and meiotic activity, 4C DNA content, and pollen sterility in rice, Oryza sativa L. cv. Lalat. Ecotoxicol Environ Saf 59:70–75

    PubMed  CAS  Google Scholar 

  • Mora M, Rosas A, Ribera A, Rengel R (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89

    CAS  Google Scholar 

  • Moroni J, Scott B, Wratten N (2003) Differential tolerance of high manganese among rapeseed genotypes. Plant Soil 253:507–519

    CAS  Google Scholar 

  • Munzuroglu O, Obek E, Geckil H (2003) Effects of simulated acid rain on the pollen germination and pollen tube growth of apple (Malus sylvestris Miller cv. Golden). Acta Biol Hung 54:95–103

    PubMed  CAS  Google Scholar 

  • Murach D, Ulrich B (1988) Destabilization of forest ecosystems by acid deposition. GeoJournal 17:253–259

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26:58–73

    PubMed  CAS  Google Scholar 

  • Najeeb U, Xu L, Shafaqat A, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170:1156–1163

    PubMed  CAS  Google Scholar 

  • Nazmi G, Esma AYY, Aykut T (2016) Acidity effect in pollen germination and tube length of Prunus amygdalus Batsch and Prunus domestica L. J Appl Biol Sci 10:41–45

    Google Scholar 

  • Neuvonen S, Nyyssönen T, Ranta H, Kiilunen S (1991) Simulated acid rain and the reproduction of mountain birch [Betula pubescens ssp. tortuosa (Ledeb.) Nyman]: a cautionary tale. New Phytol 118:111–117

    CAS  Google Scholar 

  • Nian H, Yang C, Huang H, Hideaki M (2009) Effects on low pH and aluminum stresses on common beans (Phaseolus vulgaris) differing in low phosphorus and photoperiod responses. Front Biol 4:446–452

    Google Scholar 

  • Nuruddin AA, Chang M (1999) Responses of herbaceous mimosa (Mimosa strigillosa), a new reclamation species to soil pH. Resour Conserv Recycl 27:287–298

    Google Scholar 

  • Pal’ove-Balang P, Čiamporová M, Zelinová V, Pavlovkin J, Gurinová E, Mistrík I (2012) Cellular responses of two Latin-American cultivars of Lotus corniculatus to low pH and Al stress. Cent Eur J Biol 7:1046–1054

    Google Scholar 

  • Paoletti E (1991) Effects of acidity and detergent on in vitro pollen germination and tube growth in forest tree species. Tree Physiol 10:357–366

    Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366

    Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117

    Google Scholar 

  • Pavlovkin J, Pal’ove-Balang P, Kolarovič L, Zelinová V (2009) Growth and functional responses of different cultivars of Lotus corniculatus to aluminum and low pH stress. J Plant Physiol 166:1479–1487

    PubMed  CAS  Google Scholar 

  • Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM (2013) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201 & 202:81–92

    Google Scholar 

  • Plate F (1913) Inhibition in the seed of Avena sativa. Chem Abstr 8:360

    Google Scholar 

  • Popescu A (1998) Contributions and limitations to symbiotic nitrogen fixationin common bean (Phaseolus vulgaris L.) in Romania. Plant Soil 204:117–125

    CAS  Google Scholar 

  • Poschenrieder C, Llugany M, Barcelo J (1995) Short-term effects of pH and aluminumon mineral-nutrition in maize varieties differing in proton and aluminum tolerance. J Plant Nutr 18:1495–1507

    CAS  Google Scholar 

  • Promsy G (1911) Influence of acids on germination. Acad Sci 152:450–452

    CAS  Google Scholar 

  • Qiao F, Zhang XM, Liu X, Chen J, Hu WJ, Liu TW, Liu JY, Zhu CQ, Ghoto K, Zhu XY, Zheng HL (2018) Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. Plant Physiol Biochem 127:238–247

    PubMed  CAS  Google Scholar 

  • Ramlall C, Varghese B, Ramdhani S, Pammenter NW, Bhatt A, Berjak P, Sershen (2015) Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol Plant 153:149–160

    PubMed  CAS  Google Scholar 

  • Rangel AF, Mubin M, Rao IM, Horst WJ (2005) Proton toxicity interferes with the screening of common bean Phaseolus vulgaris genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607–616

    CAS  Google Scholar 

  • Rao IM, Miles JW, Beede SE, Horst WJ (2016) Root adaptations to soils with low fertility and aluminium toxicity. Ann Bot 118:593–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ring SM, Fisher RP, Poile GJ, Helyar KR, Conyers MK, Morris SG (1993) Screening species and cultivars for their tolerance to acidic soil conditions. Plant Soil 155:521–524

    Google Scholar 

  • Rosas A, Rengel Z, Mora M (2007) Manganese supply and pH influence growth, carboxylate exudation and peroxidase activity of ryegrass and white clover. J Plant Nutr 30:253–270

    CAS  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic 188:97–105

    CAS  Google Scholar 

  • Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, van Hees M, Wannijn J, Vangronsveld J, Cuypers A (2013) Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. Environ Toxicol Chem 32:2125–2133

    PubMed  CAS  Google Scholar 

  • Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Hees MV, Wannijn J, Vangronsveld J, Cuypers A (2014) The pH strongly influences the uranium-induced effects on the photosynthetic apparatus of Arabidopsis thaliana plants. Plant Physiol Biochem 82:254–261

    PubMed  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:584–593

    Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387–394

    CAS  Google Scholar 

  • Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physiol 39:467–473

    CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminium in acid soils. Plant Cell Tissue Organ Cult 75:189–207

    CAS  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Searcy KB, Mulcahy DL (1990) Comparison of the response to aluminum toxicity in gametophyte and sporophyte of four tomato (Lycopersicon esculentum Mill). Theor Appl Genet 80:289–295

    PubMed  CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant 52:165–169

    CAS  Google Scholar 

  • Shavrukov Y, Hirai Y (2016) Good and bad protons: genetic aspects of acidity stress responses in plants. J Exp Bot 67:15–30

    PubMed  CAS  Google Scholar 

  • Shi QH, Zhu ZJ, Juan LI, Qian QQ (2006) Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agric Sci China 5:767–772

    CAS  Google Scholar 

  • Sidhu SS (1983) Effects of simulated acid rain on pollen germination and pollen tube growth of white spruce (Picea glauca). Can J Bot 61:3095–3099

    CAS  Google Scholar 

  • Siecińska J, Nosalewicz A (2016) Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors. Rev Environ Contam Toxicol 243:1–26

    Google Scholar 

  • Sierra J, Noël C, Dufour L, Ozier-Lafontaine H, Welcker C, Desfontaines L (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant Soil 252:215–226

    CAS  Google Scholar 

  • Sierra J, Ozier-Lafontaine H, Dufour L, Meunier A, Bonhomme R, Welcker C (2006) Nutrient and assimilate partitioning in two tropical maize cultivars in relation to their tolerance to soil acidity. Field Crops Res 95:234–249

    Google Scholar 

  • Sikirou M, Saito K, Dramé KN, Saidou A, Dieng I, Ahanchédé A, Venuprasad R (2016) Soil-based screening for iron toxicity tolerance in rice using pots. Plant Prod Sci 19:489–496

    CAS  Google Scholar 

  • Singh VP, Mall SL, Billore SK (1975) Effect of pH on germination of four common grass species of Ujjain (India). J Range Manag 6:497–498

    Google Scholar 

  • Singh NB, Yadav K, Amist N (2011a) Phytotoxic effects of aluminum on growth and metabolism of Pisum sativum L. Int J Innov Biol Chem Sci 2:10–21

    Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011b) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274

    PubMed  CAS  Google Scholar 

  • Slootmaker LAJ (1974) Tolerance to high soil acidity in wheat related species, rye and triticale. Euphytica 23:505–513

    Google Scholar 

  • Soil Survey Division Staff (2017) Examination and description of soil profiles. In: Soil Survey Division Staff (eds) Soil survey manual. US Department of Agriculture Handbook 18Washington, DC pp 83−230

    Google Scholar 

  • Song H, Xu X, Wang H, Tao Y (2011) Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid. Russ J Plant Physiol 58:653–659

    CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    CAS  Google Scholar 

  • Steiner F, Zoz T, Junior ASP, Castagnara DD, Dranski JAL (2012) Effects of aluminium on plant growth and nutrient uptake in young physic nut plants. Semin Ciênc Agrar 33:1779–1788

    CAS  Google Scholar 

  • Sullivan TJ, Lawrence GB, Bailey SW, McDonnell TC, Beier CM, Weathers KC, McPherson GT, Bishop DA (2013) Effects of acidic deposition and soil acidification on sugar maple trees in the adirondack mountains, New York. Environ Sci Technol 47:12687–12694

    PubMed  CAS  Google Scholar 

  • Suthar AC, Naik VR, Mulani RM (2009) Seed and seed germination in Solanum nigrum Linn. Am Eurasian J Agric Environ Sci 5:179–183

    CAS  Google Scholar 

  • Tang C, Diatloff E, Rengel Z, McGann B (2001) Growth response to subsurface soil acidity of wheat genotypes differing in aluminium tolerance. Plant Soil 236:1–10

    CAS  Google Scholar 

  • Tang C, Rengel Z, Abrecht D, Tennant D (2002) Aluminium-tolerant wheat uses more water and yields higher than aluminium-sensitive one on a sandy soil with subsurface acidity. Field Crop Res 78:93–103

    Google Scholar 

  • Tang C, Asseng S, Diatloff E, Rengel Z (2003) Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: effects of rainfall, liming and nitrogen application. Plant Soil 254:349–360

    CAS  Google Scholar 

  • Taranishi Y, Tanaka A, Osumi N, Fukui S (1974) Catalase activity of hydrocarbon utilizing Candida yeast. Agric Biol Chem 38:1213–1216

    Google Scholar 

  • The C, Calba H, Horst WJ, Zonkeng C (2001) Maize grain yield correlated responses to change in acid soil characteristics after 3 years of soil amendments. In: Seventh Eastern and Southern Africa regional maize conference, 11th to 15th February 2001, pp 222–227

    Google Scholar 

  • The C, Calba H, Zonkeng C, Ngonkeu ELM, Adetimirin VO, Mafouasson HA, Meka SS, Horst WJ (2006) Responses of maize grain yield to changes in acid soil characteristics after soil amendments. Plant Soil 284:45–57

    CAS  Google Scholar 

  • The C, Meka SS, Ngonkeu ELM, Bell JM, Mafouasson HA, Menkir A, Calba H, Zonkeng C, Atemkeng M, Horst WJ (2012) Maize grain yield responses to changes in acid soil characteristics with yearly leguminous crop rotation, fallow, slash, burn and liming practices. Int J Plant Soil Sci 1:1–15

    Google Scholar 

  • Troiano J, Colavito L, Heller L, HcCune DC, Jacobson JS (1983) Effects of acidity of simulated rain and its joint action with ambient ozone on measures of biomass and yield in soybean. Environ Exp Bot 23:113–119

    CAS  Google Scholar 

  • Turner GD, Lau RR, Young DR (1998) Effect of acidity on germination and seedling growth of Paulownia tomentosa. J Appl Ecol 25:561–567

    Google Scholar 

  • Uchida R, Hue NV (2000) Soil acidity and liming. In: Silva JA, Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, pp 101–111

    Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in Central Europe. Soil Sci 130:193–199

    CAS  Google Scholar 

  • Van Schaik CP, Mirmanto E (1985) Spatial variation in the structure and litter fall of a Sumatran rain forest. Biotropica 17:196–205

    Google Scholar 

  • Van Wambeke A (1976) Formation, distribution and consequences of acid soils in agricultural development. In: Wright MJ, Ferrari SA (eds) Proceedings of workshop on plant adaptation to mineral stress in problem soils. Special Publications Cornell University, Agricultural Experiment Station, Ithaca, pp 15–24

    Google Scholar 

  • Vitorello VA, Capaldi FRC, Stefanuto VA (2005) Recent advances in aluminium toxicity and resistance in higher plants. Braz J Plant Physiol 17:129–143

    CAS  Google Scholar 

  • Vleeshouwers LM, Bowmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037

    Google Scholar 

  • Von Uexkȕll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Google Scholar 

  • Wen XJ, Duan CQ, Zhang DC (2013) Effect of simulated acid rain on soil acidification and rare earth elements leaching loss in soils of rare earth mining area in southern Jiangxi Province of China. Environ Earth Sci 69:843–853

    CAS  Google Scholar 

  • Wenzl P, Mancilla LI, Mayer JE, Albert R, Rao IM (2003) Simulating infertile acid soils with nutrient solutions. Soil Sci Soc Am J 67:1457–1469

    CAS  Google Scholar 

  • Wikipedia (2018) Soil pH, from Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Soil_pH. Accessed 20 Sept 2018

  • Wilkinson RE, Duncan RR (1989) Sorghum seedling growth as influenced by H+, Ca2+, and Mn2+ concentrations. J Plant Nutr 12:1379–1394

    CAS  Google Scholar 

  • Wood S, Sebastian K, Scherr SJ (2000) Pilot analysis of global ecosystems: agroecosystems. WRI and IFPRI, Washington

    Google Scholar 

  • Yan F, Feuerle R, Schaffer S, Fortmeier H, Schubert S (1998) Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH. Plant Physiol 117:311–319

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell Wall polysaccharides are specifically involved in the exclusion of aluminium from the rice root apex. Plant Physiol 146:602–611

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang M, Huang SX, Fang SZ, Huang XL (2011) Response of seedling growth of four eucalyptus clones to acid and aluminum stress. Plant Nutr Fert Sci 17:195–201

    CAS  Google Scholar 

  • Yang ZB, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372:3–25

    CAS  Google Scholar 

  • Yang M, Tan L, Xu Y, Zhao Y, Cheng F, Ye S, Jiang W (2015) Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast growing eucalyptus vegetatively propagated clones. PLoS One 10:e0130963. https://doi.org/10.1371/journal.pone.0130963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, He N, Wang Q, Zhu J, Gao Y, Zhang Y, Jia Y, Yu G (2017) Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ Pollut 231:182–190

    PubMed  CAS  Google Scholar 

  • Zabawi AGM, Esa SM, Leong CP (2008) Effects of simulated acid rain on germination and growth of rice plant. J Trop Agric Food Sci 36:1–6

    Google Scholar 

  • Zeigler RS, Pandey S, Miles J, Gourley LM, Sarkarung S (1995) Advances in the selection and breeding of acid-tolerant plants: rice, maize, sorghum and tropical forages. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Developments in plant and soil sciences, vol 64. Springer, Dordrecht, pp 391–406

    Google Scholar 

  • Zhang X, Liu P, Yang YS, Xu G (2007) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444

    CAS  Google Scholar 

  • Zhang H, Tan Z, Hu L, Wang S, Luo J, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    PubMed  CAS  Google Scholar 

  • Zhang CP, Meng P, Li JZ, Wan XC (2014) Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings. China J Plant Ecol 38:1345–1355

    Google Scholar 

  • Zhang Y-K, Zhu D-F, Zhang Y-P, Chen H-Z, Xiang J, Lin X-Q (2015) Low pH-induced changes of antioxidant enzyme and atpase activities in the roots of rice (oryza sativa l.) seedlings. PLoS One 10:e0116971. https://doi.org/10.1371/journal.pone.0116971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao MR, Li F, Fang Y, Gao Q, Wang W (2011) Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 248:313–323

    PubMed  Google Scholar 

  • Zhao XQ, Guo SW, Shinmachi F, Sunairi M, Noguchi A, Hasegawa I, Shen RF (2013) Aluminum tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference. Ann Bot 111:69–77

    PubMed  CAS  Google Scholar 

  • Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–1440

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borhannuddin Bhuyan, M.H.M. et al. (2019). Plants Behavior Under Soil Acidity Stress: Insight into Morphophysiological, Biochemical, and Molecular Responses. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_2

Download citation

Publish with us

Policies and ethics