Skip to main content
Log in

Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P <0.05) with maximum in A. pinnata reactor (number 343.3 ± 10.23 %; weight 98.62 ± 4.23 % ) and minimum in submerged macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P <0.05) and mean body weight (F4 = 13.49, P <0.05) among different reactors whereas growth rate (F3 = 23.62, P <0.05) and relative growth rate (F3 = 4.91, P <0.05) exhibited significant variation during different fortnights. Reactors showed significant variation (P <0.05) in pH, Electrical conductivity (EC), Organic carbon (OC), Organic nitrogen (ON), and C/N ratio during different fortnights with increase in pH, EC, N, and K whereas decrease in OC and C/N ratio. Hierarchical cluster analysis grouped five substrates (weeds) into three clusters—poor vermicompost substrates, moderate vermicompost substrate, and excellent vermicompost substrate. Two principal components (PCs) have been identified by factor analysis with a cumulative variance of 90.43 %. PC1 accounts for 47.17 % of the total variance represents “reproduction factor” and PC2 explaining 43.26 % variance representing “growth factor.” Thus, the nature of macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adi AJ, Noor ZM (2009) Waste recycling, utilization of coffee grounds, and kitchen waste in vermicomposting. Bioresour Technol 100:1027–1030

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Battle JM, Mihuc TB (2000) Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418:123–136

    Article  Google Scholar 

  • Bauer N, Blaschke U, Beutler E, Gross EM, Jenett-Siems K, Siems K, Hilt S (2009) Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on anabaena variabilis. Aquat Bot 91:110–116

    Article  CAS  Google Scholar 

  • Bianchini JI, Cunha-Santino MB, Milan JAM, Rodrigues CJ, Dias JHP (2010) Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644:301–312

    Article  Google Scholar 

  • Caffrey JM, Monahan C (2006) Control of Myriophyllum verticillatum L in Irish canals by turion removal. Hydrobiologia 570:211–215

    Article  Google Scholar 

  • Chakrabarty D, Das SK, Das MK (2009) Earthworm (Eudrillus euginae) multiplication through variable substrates. Aquacult Nutr 15:513–516

    Article  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595(1):9–26

    Article  Google Scholar 

  • Chauhan A, Joshi PC (2010) Composting of some dangerous and toxic weeds using Eisenia fetida. J Am Sci 6(3):1–6

    Article  Google Scholar 

  • Curry P, Schmidt O (2007) The feeding ecology of earthworms. A review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • Cynthia JM, Rajeshkumar KT (2012) A study on sustainable utility of sugar mill effluent to vermicompost. Adv Appl Sci Res 3(2):1092–1097

    Google Scholar 

  • Dominguez J (2004) State of the art and new perspectives on vermicomposting research. In: Edwards CA (ed) Earthworm Ecology, 2nd edn. CRC Press, Boca Raton, pp 401–424

    Chapter  Google Scholar 

  • Domínguez J, Aira M, Gómez-Brandón M (2010) Vermicomposting: earthworms enhance the work of microbes. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at Work: from wastes to resources. Springer-Verlag, Berlin Heildelberg, pp 93–114

    Chapter  Google Scholar 

  • Domínguez J, Edwards CA (2011) Biology and ecology of earthworm species used for vermicomposting. In: Edwards CA, Arancon NQ, Sherman RL (eds) Vermiculture technology: earthworms organic waste and environmental management. CRC Press, Boca Raton, pp 25–37

    Google Scholar 

  • Domínguez J, Edwards CA, Webster M (2000) Vermicomposting of sewage sludge, Effect of bulking materials on the growth and reproduction of the earthworm Eisenia andrei. Pedobiologia 44:24–32

    Article  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman R (2011) Vermiculture technology: earthworms, organic wastes and environmental management. CRC press, Boca Raton

    Google Scholar 

  • Edwards CA (1988) Breakdown of animal, vegetable, and industrial organic wastes by earthworms. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, Hague, pp 21–31

    Google Scholar 

  • Edwards CA, Domínguez J, Neuhauser EF (1998) Growth and reproduction of Perionyx excavatus (Per.) (Megascolecidae) as factors in organic waste management. Biol Fertil Soils 27:155–161

    Article  Google Scholar 

  • Edwards CA, Fletcher KE (1998) Interaction between earthworms and microorganisms in organic-matter breakdown. Agr Ecosyst Environ 24:235–247

    Article  Google Scholar 

  • Flack FM, Hartenstein R (1984) Growth of the earthworm Eisenia foetida on microorganisms and cellulose. Soil Biol Biochem 16:126–130

    Article  Google Scholar 

  • Gajalakshmi SA, Ramasamy EV, Abbasi SA (2001) Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Bioresour Technol 76:177–181

    Article  CAS  Google Scholar 

  • Ganesh PS, Gajalakshmi S, Abbasi SA (2009) Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): possible roles of reactor geometry, polyphenols and lignin. Bioresour Technol 100(5):1819–1827

    Article  CAS  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of wastes using Eisenia fetida: a comparative study. Bioresour Technol 97:391–395

    Article  CAS  Google Scholar 

  • Garg VK, Chand S, Chhillar A, Yadav A (2005) Growth and reproduction of Eisenia fetida in various animal wastes during vermicomposting. Appl Ecol Environ Res 3(2):51–59

    Google Scholar 

  • Gaur AC, Singh G (1995) Recycling of rural and urban waste through conventional and vermicomposting. In: Tondon HLS (ed) Recycling of crop, animal, human and industrial waste in agriculture. Fertilizer Development and Consultation Organization, New Delhi, pp 31–49

    Google Scholar 

  • Ghosh M, Chattopadhyay GN, Baral K (1999) Transformation of phosphorus during vermicomposting. Bioresour Technol 69:149–154

    Article  CAS  Google Scholar 

  • Gupta PK (1999) Soil, plant, water, and fertilizer analysis. Agro Botanica, Bikaner

    Google Scholar 

  • Gupta R, Garg VK (2008) Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater 153:123–130

    Article  Google Scholar 

  • Hayawin ZN, Khalil HPSA, Jawaid M, Ibrahim MH, Astimar AA (2010) Exploring chemical analysis of vermicompost of various oil palm fibre wastes. Environmentalist 30:273–278

    Article  Google Scholar 

  • Indrajeet RSN, Singh J (2010) Vermicomposting of farm garbage in different combination. J Recent Adv Appl Sci 25:15–18

    Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  • Jesikha M, Lekeshmanaswamy M (2013) Effect of Pongamia Leaf Medium on Growth of Earthworm (Eudrilus eugeniae). Int J Sci Res Publ 3(1):1–4

    Google Scholar 

  • Kale RD, Bano K, Krishnamoorthy RV (1982) Potential of Perionyx excavatus for utilizing organic wastes. Pedobiologia 23:419–425

    Google Scholar 

  • Kale RD, Krishnamoorthy RV (1981a) Litter preferences in the earthworm Lampito mauritii. P Indian As-Anim Sci 90:123–128

    Google Scholar 

  • Kale RD, Krishnamoorthy RV (1981b) What affects the abundance and diversity of earthworms in soils? P. Indian As-Anim Sci 90:117–121

    Google Scholar 

  • Karmegam N, Daniel T (2009) Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates. Environmentalist 29:287–300

    Article  Google Scholar 

  • Kaviraj SS, Sharma S (2003) Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour Technol 90:169–173

    Article  CAS  Google Scholar 

  • Lattin J, Carroll D, Green P (2003) Analyzing multivariate data. Duxbury, New York

    Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89

    Article  CAS  Google Scholar 

  • Mainoo NOK, Barrington S, Whalen JK, Sampedro L (2009) Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technol 100:5872–5875

    Article  CAS  Google Scholar 

  • Muthukumaravel K, Amsath A, Sukumaran M (2008) Vermicomposting of vegetable wastes using cow dung. E-J Chem 5(4):810–813

    Article  CAS  Google Scholar 

  • Najar IA, Khan AB (2010) Vermicomposting of Azolla pinnata by using earthworm Eisenia fetida. Bioscan 5(2):239–241

    Google Scholar 

  • Najar IA, Khan AB (2012) Vermicomposting of fresh water weeds (macrophytes) by Eisenia fetida (Savigny, 1826), Aporrectodea caliginosa trapezoides (Duges, 1828) and Aporrectodea rosea rosea (Savigny, 1826). Dyn Soil Dyn plant 6(S1):73–77

    Google Scholar 

  • Nedgwa PM, Thompson SA (2000) Effect of C to N ratio on vermicomposting in the treatment and bioconversion of biosolids. Bioresour Technol 76:7–12

    Google Scholar 

  • Neuhauser EF, Hartenstein R, Kaplan DL (1980) Growth of the earthworm Eisenia foetida in relation to population density and food rationing. Oikos 35:93–98

    Article  Google Scholar 

  • Pramanik P, Chung YR (2010) Efficacy of vermicomposting for recycling organic portion of hospital wastes using Eisenia fetida: standardization of cow manure proportion to increase enzymatic activities and fungal biomass. Environmentalist 30:267–272

    Article  Google Scholar 

  • Pramanik P, Chung YR (2011) Changes in fungal population of fly ash and vinasse mixture during vermicomposting by Eudrilus eugeniae and Eisenia fetida, Documentation of cellulase isozymes in vermicompost. Waste Manage 31(6):1169–1175

    Article  CAS  Google Scholar 

  • Rathinamala J, Jayashree S, Lakshmanaperumalsamy P (2008) Potential utilization of domestic wastes as a suitable experimental diet to enhance the biomass of Eudrilus eugeniae in various seasons. Eco Env Cons 14(1):43–50

    Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burger A, Raw F (eds) Soil Biology. Academic Press, London, pp 259–322

    Google Scholar 

  • Sculthorpe CD (1985) The biology of aquatic vascular plants. Koeltz Scientific Books, Königstein-West Germany, 97

    Google Scholar 

  • Simard RR (1993) Ammonium acetate extractable elements. In: Martin R, Carter S (eds) Soil sampling and method of analysis. Lewis Publishers, Florida, pp 39–43

    Google Scholar 

  • Singh D, Suthar S (2012) Vermicomposting of herbal pharmaceutical industry solid wastes. Ecol Eng 39:1–6

    Article  Google Scholar 

  • Singh RP, Embrandiri A, Ibrahim MH, Esa N (2011a) Management of biomass residues generated from palm oil mill, vermicomposting a sustainable option. Resour Conserv Recy 55:423–434

    Article  Google Scholar 

  • Singh RP, Singh P, Araujo ASF, Ibrahim MH, Sulaiman O (2011b) Management of urban solid waste, vermicomposting a sustainable option. Resour Conserv Recy 55:719–729

    Article  Google Scholar 

  • Sinha R (2009) Earthworms, the miracle of nature (Charles Darwin’s ‘unheralded soldiers of mankind and farmer’s friends’). Environmentalist 29:339–340

    Article  Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms, a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 28:409–420

    Article  Google Scholar 

  • Suthar S (2007a) Production of vermifertilizer from guar gum industrial wastes by using composting earthworm Perionyx sansibaricus (Perrier). Environmentalist 27:329–335

    Article  Google Scholar 

  • Suthar S (2007b) Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresour Technol 98:1231–1237

    Article  CAS  Google Scholar 

  • Suthar S (2008) Bioconversion of post-harvest residues and cattle shed manure into value added products using earthworm Eudrilus eugeniae. Ecol Eng 32:206–214

    Article  Google Scholar 

  • Suthar S (2009) Growth and fecundity of earthworms, Perionyx excavatus and Perionyx sansibaricus in cattle waste solids. Environmentalist 29:78–84

    Article  Google Scholar 

  • Suthar S (2010) Recycling of agro-industrial sludge through vermitechnology. Ecol Eng 3:1028–1036

    Article  Google Scholar 

  • Suthar S (2012) Earthworm production in cattle dung vermicomposting system under different stocking density loads. Environ Sci Pollut Res 19:748–755

    Article  CAS  Google Scholar 

  • Tare V, Hait S (2011) Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Manage 31(3):502–5011

    Article  Google Scholar 

  • Vinotha SP, Parthasarathi K, Ranganathan LS (2000) Enhanced phosphatase activity in earthworm casts is more of microbial origin. Curr Sci 79(9):1158–1159

    CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Yadav A, Garg VK (2009) Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J Hazard Mater 168:262–268

    Article  CAS  Google Scholar 

  • Yadav A, Garg VK (2011) Vermicomposting—an effective tool for the management of invasive weed Parthenium hysterophorus. Bioresour Technol 102:5891–5895

    Article  CAS  Google Scholar 

  • Yadav KD, Tare V, Ahammed MM (2010) Vermicomposting of source separated human faeces for nutrient recycling. Waste Manage 30:50–56

    Article  CAS  Google Scholar 

  • Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishtiyaq Ahmed Najar.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najar, I.A., Khan, A.B. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida . Environ Sci Pollut Res 20, 6406–6417 (2013). https://doi.org/10.1007/s11356-013-1687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1687-9

Keywords

Navigation