Skip to main content
Log in

Screening of 18 species for digestate phytodepuration

  • Wetland Systems: Ecology, Functions and Management
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10–15 g/m2) and phosphorus (1–4 g/m2) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. doi:10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  • Balsari P, Dinuccio E, Gioelli F (2013) A floating coverage system for digestate liquid fraction storage. Bioresour Technol 134:285–9. doi:10.1016/j.biortech.2013.02.021

    Article  CAS  Google Scholar 

  • Borin M, Salvato M (2012) Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol Eng 46:34–42

    Article  Google Scholar 

  • Brown JJ, Glenn EP (1999) Reuse of highly saline aquaculture effluent to irrigate a potential forage halophyte, Suaeda esteroa. Aquac Eng 20:91–111. doi:10.1016/S0144-8609(99)00009-6

    Article  Google Scholar 

  • Brown JJ, Glenn EP, Fitzsimmons KM, Smith SE (1999) Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175:255–268. doi:10.1016/S0044-8486(99)00084-8

    Article  CAS  Google Scholar 

  • Calheiros CSC, Quitério PVB, Silva G et al (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manage 95:66–71. doi:10.1016/j.jenvman.2011.10.003

    Article  CAS  Google Scholar 

  • Comino E, Riggio VA, Rosso M (2013) Constructed wetland treatment of agricultural effluent from an anaerobic digester. Ecol Eng 54:165–172. doi:10.1016/j.ecoleng.2013.01.027

    Article  Google Scholar 

  • Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J L 375:1

  • de Casabianca-Chassany ML, Boonne C, Bassères A (1992) Eichhornia crassipes systems on three ammonium-containing industrial effluents (pectin, carcass-treatment wastes and manure): production and purification. Bioresour Technol 42(2):95–101. doi:10.1016/0960-8524(92)90067-8

    Article  Google Scholar 

  • De Stefani G, Tocchetto D, Salvato M, Borin M (2011) Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. 157–167. doi: 10.1007/s10750-011-0730-4

  • FAO (2011). Quality assurance for animal feed analysis laboratories. FAO Animal Production and Health Manual No. 14. Rome.

  • Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92:738–44. doi:10.1016/j.chemosphere.2013.04.023

    Article  CAS  Google Scholar 

  • García J (2004) Humedales construidos para controlar la contaminacíon: perspec- tiva sobre una tecnología en expansión. In: García J, Morató J, Bayona JM (eds) Nuevos Creiterios para el Diseno y Operación de Humedales Construidos. Ediciones CPET, UPC, pp 7–16

    Google Scholar 

  • Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 4:439–46

    Article  Google Scholar 

  • Humenik FJ, Szogi AA, Hunt PG, Broome S, Rice M (1999) Wastewater utilization: a place for managed wetlands. Asian–Australas. J Anim Sci 12:629–632

    Google Scholar 

  • Kadlec RH, Wallace S (2009) Treatment wetlands. Press, CRC. ISBN 978-1-56670-526-4

    Google Scholar 

  • Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control: processes, performance, design and operation. IWA Specialist Group on Use of Macrophytes in Water Pollution Control, Scientific and Technical Report 8. IWA Publishing, London, UK.

  • Klomjek P, Nitisoravut S (2005) Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere 58:585–93. doi:10.1016/j.chemosphere.2004.08.073

    Article  CAS  Google Scholar 

  • Lang F, von der Lippe M, Schimpel S et al (2010) Topsoil morphology indicates bio-effective redox conditions in Venice salt marshes. Estuar Coast Shelf Sci 87:11–20. doi:10.1016/j.ecss.2009.12.002

    Article  CAS  Google Scholar 

  • Li S, Wang Z, Stewart BA (2013) Responses of crop plants to ammonium and nitrate N. Advances in Agronomy, 118:205-397. http://dx.doi.org/10.1016/B978-0-12-405942-9.00005-0.

  • Liedl BE, Bombardiere J, Chatfield JM (2006). Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste. Water Sci Technol 53:69–79. IWA publishing 2006.

  • Lin Y-F, Jing S-R, Lee D-Y, Wang T-W (2002) Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209:169–184. doi:10.1016/S0044-8486(01)00801-8

    Article  CAS  Google Scholar 

  • Lin Y-F, Jing S-R, Lee D-Y (2003) The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environ Pollut 123:107–13

    Article  CAS  Google Scholar 

  • Lin Y-F, Jing S-R, Lee D-Y et al (2005) Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ Pollut 134:411–21. doi:10.1016/j.envpol.2004.09.015

    Article  CAS  Google Scholar 

  • Lymbery AJ, Doupé RG, Bennett T, Starcevich MR (2006) Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac Eng 34:1–7. doi:10.1016/j.aquaeng.2005.03.004

    Article  Google Scholar 

  • Lymbery AJ, Kay GD, Doupé RG et al (2013) The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Sci Total Environ 445–446:192–201. doi:10.1016/j.scitotenv.2012.12.058

    Article  Google Scholar 

  • Masotti L, Verlicchi P (2009) Depurazione delle acque di piccolo comunità. Ulrico Hoepli editore Spa 2005. ISBN 88-203-2963-8

  • Massaccesi L, Sordi A, Micale C et al (2013) Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochem 48:1361–1367. doi:10.1016/j.procbio.2013.06.026

    Article  CAS  Google Scholar 

  • Massé DI, Droste RL (2000) Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Res 34:3087–106

    Article  Google Scholar 

  • Mietto A, Borin M, Salvato M, Ronco P, Tadiello N (2013) TECH-IA floating system introduced in urban wastewater treatment plants in Veneto Region – Italy. Water Sci Technol 68(5):1144–1150. doi:10.2166/wst.2013.357

    Article  CAS  Google Scholar 

  • Møller J, Boldrin A, Christensen TH (2009) Anaerobic digestion and digestate use: accounting of greenhouses gases and global warming contribution. Waste Manag Res 27:813–24. doi:10.1177/0734242X09344876

    Article  Google Scholar 

  • Reddy KR, Sutton DL, Bowes G (1983) Freshwater aquatic plant biomass production in Florida. Soil Crop Sci Soc Fla Pro 42:28–40

    Google Scholar 

  • Scarton F (2006) Primary productivity of seven halophytes in Venice Lagoon. Bollettino Museo Civico Storia Naturale Venezia 57:53–71 (in Italian)

  • Soto F, García M, de Luís E, Bécares E (1999) Role of Scirpus lacustris in bacterial and nutrient removal from wastewater. Water Sci Technol 40(3):241–247. doi:10.1016/S0273-1223(99)00463-1

    Article  Google Scholar 

  • Sousa WTZ, Panitz CMN, Thomaz SM (2011) Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent. Braz Arch Biol Technol 54:405–413. doi:10.1590/S1516-89132011000200024

    Article  Google Scholar 

  • Surrency D (1993) Evaluation of aquatic plants for constructed wetlands. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. Lewis Publishers, Boca Raton, FL pp, pp 349–357

    Google Scholar 

  • Tambone F, Scaglia B, D’Imporzano G et al (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–83. doi:10.1016/j.chemosphere.2010.08.034

    Article  CAS  Google Scholar 

  • Tanner CC (1994) Growth and nutrition of Schoenoplectus validus in agricultural wastewaters. Aquat Bot 47(2):131–153. doi:10.1016/0304-3770(94)90010-8

    Article  Google Scholar 

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37:474–486. doi:10.1016/j.ecoleng.2010.12.012

    Article  Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng. doi:10.1016/j.ecoleng.2013.06.023

    Google Scholar 

  • Webb JM, Quintã R, Papadimitriou S et al (2012) Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res 46:5102–14. doi:10.1016/j.watres.2012.06.034

    Article  CAS  Google Scholar 

  • Webb JM, Quintã R, Papadimitriou S et al (2013) The effect of halophyte planting density on the efficiency of constructed wetlands for the treatment of wastewater from marine aquaculture. Ecol Eng 61:145–153. doi:10.1016/j.ecoleng.2013.09.058

    Article  Google Scholar 

Online resources

  • EurObserv’ER (2010) The state of renewable energies in Europe. 10th EurObserv’ER Report. http://www.eurobserv-er.org/pdf/barobilan10. pdf.

  • Database CRPA (2012) centro ricerche produzioni animali S.p.a. http://www.crpa.it/nqcontent.cfm?a_id=1109

Download references

Acknowledgments

Research was carried out with the financial support of the Italian Ministry of Agriculture and Forestry, FITOPROBIO Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Pavan.

Additional information

Responsible editor: Thomas Braunbeck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, F., Breschigliaro, S. & Borin, M. Screening of 18 species for digestate phytodepuration. Environ Sci Pollut Res 22, 2455–2466 (2015). https://doi.org/10.1007/s11356-014-3247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3247-3

Keywords

Navigation