Skip to main content
Log in

Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Samples of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) were collected at three sampling stations (Xiaomai Island, Laohutan, and Zhangzi Island) in the north Yellow Sea, China during November 2008 and September 2009 to study their atmospheric transport potential and the gas/particle distributions. The composition of PAHs was dominated by gaseous compounds. The percentages of the particle-phase PAHs to the total concentrations were found to be higher during the heating period than the non-heating period. The ratios of naphthalene and acenaphthene to phenanthrene, chrysene and dibenzo(a,h)anthracene showed an increasing trend from Xiaomai Island to Zhangzi Island, which can be called as the local atmospheric distillation of PAHs. Gas/particle partitioning coefficients (K p) and their relationship with the sub-cooled liquid vapor pressures (pºL) of PAHs were investigated. The regressions of logK p versus logpºL gave significant correlations for all samples of the three sites with r 2 values in the range 0.56–0.66 (p < 0.01). Both Junge–Pankow adsorption model and octanol–air partition coefficient absorption model tended to underestimate the sorption for most PAHs, but the absorption model appeared to be more suitable for predicting the particle fraction of PAHs than the Junge–Pankow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bryselbout C (2000) Polycyclic aromatic hydrocarbons in highway plants and soils. Evidence for a local distillation effect. Analusis 28:290–293

    Article  CAS  Google Scholar 

  • Chen LG, Mai BX, Bi XH et al (2006) Concentration levels, compositional profiles, and gas–particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. Environ Sci Technol 40:1190–1196

    Article  CAS  Google Scholar 

  • Duan FK, He KB, Ma YL et al (2005) Characteristics of carbonaceous aerosols in Beijing, China. Chemosphere 60:355–364

    Article  CAS  Google Scholar 

  • Esen F, Tasdemir Y, Vardar N (2008) Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos Res 88:243–255

    Article  CAS  Google Scholar 

  • Fernández P, Grimalt JO (2003) On the global distribution of persistent organic pollutants. Chimia 57:514–521

    Article  Google Scholar 

  • Finizio A, Mackay D, Bidleman TF, Harner T (1997) Octanol–air partition coefficients as a predictor of partitioning of semivolatile organic chemicals. Atmos Environ 31:2289–2296

    Article  CAS  Google Scholar 

  • Gaga EO, Ari A (2011) Gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in an urban traffic site in Eskisehir, Turkey. Atmos Res 99:207–216

    Article  CAS  Google Scholar 

  • Glaser B, Dreyer A, Bock M et al (2005) Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Environ Sci Technol 39:3911–3917

    Article  CAS  Google Scholar 

  • Goss KU, Schwarzenbach RP (1998) Gas–solid and gas–liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants. Environ Sci Technol 32:2025–2032

    Article  CAS  Google Scholar 

  • Götz CW, Scheringer M, Macleod M et al (2007) Alternative approaches for modeling gas–particle partitioning of semivolatile organic chemicals: model development and comparison. Environ Sci Technol 41:1272–1278

    Article  Google Scholar 

  • Harner T, Bidleman TF (1998) Octanol–air partition coefficient for describing particle–gas partitioning of aromatic compounds in urban air. Environ Sci Technol 32:1494–1502

    Article  CAS  Google Scholar 

  • Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2004) Using passive air samplers to assess urban–rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ Sci Technol 38:4474–4483

    Article  CAS  Google Scholar 

  • Huang XY, Chen JW, Gao LN et al (2004) Data evaluations and quantitative predictive models for vapor pressures of polycyclic aromatic hydrocarbons at different temperatures. SAR QSAR Environ Res 15:115–125

    Article  CAS  Google Scholar 

  • Junge CE (1977) Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants. In: Suffet IH (ed) Fate of pollutants in the air and water environments. Part I. Wiley, New York, pp 7–26

    Google Scholar 

  • Li XH, Chen JW, Zhang L, Qiao XL, Huang LP (2006) The fragment constant method for predicting octanol–air partition coefficients of persistent organic pollutants at different temperatures. J Phys Chem Ref Data 35:1365–1384

    Article  CAS  Google Scholar 

  • Liu AX, Lang YH, Xue LD et al (2009) Probabilistic ecological risk assessment and source apportionment of polycyclic aromatic hydrocarbons in surface sediments from Yellow Sea. Bull Environ Contam Toxicol 83:681–687

    Article  CAS  Google Scholar 

  • Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas–particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Environ Sci Technol 38:3793–3803

    Article  CAS  Google Scholar 

  • Ma M, Feng Z, Guan C et al (2001) DDT, PAH and PCB in sediments from the Intertidal Zone of the Bohai Sea and the Yellow Sea. Mar Pollut Bull 42:132–136

    Article  CAS  Google Scholar 

  • Odabasi M, Eylem C, Aysun S (2006) Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas–particle partitioning in an urban atmosphere. Atmos Environ 40:6615–6625

    Article  CAS  Google Scholar 

  • Pankow JF (1994a) An absorption model of gas–particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188

    Article  CAS  Google Scholar 

  • Pankow JF (1994b) An absorption model of the gas–aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28:189–193

    Article  CAS  Google Scholar 

  • Pinxteren DV, Brüggemann E, Gnauk T et al. 2009 Size- and time-resolved chemical particle characterization during CAREBeijing-2006: different pollution regimes and diurnal profiles. J Geophys Res 114: D00G09, 27 PP

    Google Scholar 

  • Sanusi A, Millet M, Mirabel P et al (1999) Gas–particle partitioning of pesticides in atmospheric samples. Atmos Environ 33:4941–4951

    Article  CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269:1851–1854

    Article  CAS  Google Scholar 

  • Sun YL, Zhuang GS, Ying W et al (2004) The air-borne particulate pollution in Beijing: concentration, composition, distribution and sources. Atmos Environ 38:5991–6004

    Article  CAS  Google Scholar 

  • Tasdemir Y, Esen F (2007) Urban air PAHs: concentrations, temporal changes and gas-particle partitioning at a traffic site in Turkey. Atmos Res 84:1–12

    Article  CAS  Google Scholar 

  • Vardar N, Esen F, Tasdemir Y (2008) Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environ Pollut 155:298–307

    Article  CAS  Google Scholar 

  • Wang Z, Chen JW, Yang P et al (2007a) Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment. J Environ Monitor 9:199–204

    Article  CAS  Google Scholar 

  • Wang Z, Chen JW, Qiao XL et al (2007b) Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68:965–971

    Article  CAS  Google Scholar 

  • Yang P, Chen JW, Wang Z et al (2007) Contributions of deposited particles to pine needle polycyclic aromatic hydrocarbons. J Environ Monit 9:1248–1253

    Article  CAS  Google Scholar 

  • Yang YY, Guo PR, Zhang Q et al (2010) Seasonal variation, sources and gas-particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China. Sci Total Environ 408:2492–2500

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R et al (2002) PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zheng JS, Richardson BJ, Shouming O et al (2004) Distribution and sources of polycyclic aromatic hydrocarbon (PAH) in marine environment of China. Chin J Oceanol Limnol 22:136–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their helpful comments on the manuscript. This study was supported financially by the UNDP/GEF Yellow Sea Project (P-I-08-atmdepdemo-2158), the National Natural Science Foundation (21007012), and the Special Fund for Marine Scientific Research in the Public Interest of China (201005034, 201105013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Yao.

Additional information

Communicated by Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Ren, P., Sun, Y. et al. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. Environ Sci Pollut Res 20, 5753–5763 (2013). https://doi.org/10.1007/s11356-013-1588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1588-y

Keywords

Navigation