Skip to main content

Advertisement

Log in

Atmospheric polycyclic aromatic hydrocarbons (PAHs) of southern Taiwan in relation to monsoons

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The concentrations and gas-particle partitioning of atmospheric polycyclic aromatic hydrocarbons (PAHs) were intensively measured in the Hengchun Peninsula of southern Taiwan. The concentrations of total PAH (Σ38PAH), including gas and particle phases, ranged from 0.85 to 4.40 ng m−3. No significant differences in the PAH levels and patterns were found between the samples taken at day and at night. The gas phase PAH concentrations were constant year-round, but the highest levels of particle-associated PAHs were found during the northeast monsoon season. Long-range transport and rainfall scavenging mechanisms contributed to the elevated levels in aerosols andΣ38PAH concentrations. Results from principal component analysis (PCA) indicated that the major sources of PAHs in this study were vehicular emissions. The back trajectories demonstrated that air mass movement driven by the monsoon system was the main influence on atmospheric PAH profiles and concentrations in the rural region of southern Taiwan. Gas-particle partition coefficients (K p ) of PAHs were well-correlated with sub-cooled liquid vapor pressures (P o L ) and demonstrated significant seasonal variation between the northeast (NE) and the southwest (SW) monsoon seasons. This study sheds light on the role of Asian monsoons regarding the atmospheric transport of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behymer TD, Hites RA (1985) Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates. Environ Sci Technol 19:1004–1006

    Article  CAS  Google Scholar 

  • Bidleman TF (1988) Atmospheric processes. Environ Sci Technol 22:361–367

    Article  CAS  Google Scholar 

  • Boehm PD (2005) 15—polycyclic aromatic hydrocarbons (PAHs). In: Murphy RDML (ed) Environmental forensics. Academic, Burlington, pp 313–337

    Google Scholar 

  • Chang KF, Fang GC, Chen JC, Wu YS (2006) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ Pollut 142:388–396

    Article  CAS  Google Scholar 

  • Chang S-C, Chou CCK, Chen W-N, Lee C-T (2010) Asian dust and pollution transport—a comprehensive observation in the downwind Taiwan in 2006. Atmos Res 95:19–31

    Article  CAS  Google Scholar 

  • Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J (2005) Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ Sci Technol 39:1861–1867

    Article  CAS  Google Scholar 

  • Chen H-y, Y-g T, Wang J-s (2012) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci Total Environ 414:293–300

    Article  CAS  Google Scholar 

  • Chi KH, Lin C-Y, Yang C-FO, Wang J-L, Lin N-H, Sheu G-R et al (2010) PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environ Sci Technol 44:2954–2960

    Article  CAS  Google Scholar 

  • Cotham WE, Bidleman TF (1995) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan. Environ Sci Technol 29:2782–2789

    Article  CAS  Google Scholar 

  • Dachs J, Glenn TR IV, Gigliotti CL, Brunciak P, Totten LA, Nelson ED et al (2002) Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. Atmos Environ 36:2281–2295

    Article  CAS  Google Scholar 

  • Ding X, Wang X-M, Xie Z-Q, Xiang C-H, Mai B-X, Sun L-G et al (2007) Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: spatial distribution and source identification. Atmos Environ 41:2061–2072

    Article  CAS  Google Scholar 

  • Douben PE (2003) PAHs: an ecotoxicological perspective. Wiley

  • Draxler RR, Rolph GD (2013) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD

  • Fang G-C, Chang C-N, Wu Y-S, Fu PP-C, Yang I-L, Chen M-H (2004) Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci Total Environ 327:135–146

    Article  CAS  Google Scholar 

  • Fernández P, Grimalt JO, Vilanova RM (2002) Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ Sci Technol 36:1162–1168

    Article  Google Scholar 

  • Foreman WT, Bidleman TF (1990) Semivolatile organic compounds in the ambient air of Denver, Colorado. Atmos Environ A Gen Top 24:2405–2416

    Article  Google Scholar 

  • Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    Article  CAS  Google Scholar 

  • Goss K-U, Schwarzenbach RP (1998) Gas/solid and gas/liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants. Environ Sci Technol 32:2025–2032

    Article  CAS  Google Scholar 

  • Halsall CJ, Barrie LA, Fellin P, Muir D, Billeck B, Lockhart L et al (1997) Spatial and temporal variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere. Environ Sci Technol 31:3593–3599

    Article  CAS  Google Scholar 

  • Hanedar A, Alp K, Kaynak B, Baek J, Avsar E, Odman MT (2011) Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmos Res 99:391–399

    Article  CAS  Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832

    Article  CAS  Google Scholar 

  • Huang H-C, Lee C-L, Lai C-H, Fang M-D, Lai I (2012) Transboundary movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean. Atmos Environ 54:470–479

    Article  CAS  Google Scholar 

  • Kaneyasu N, Takada H (2004) Seasonal variations of sulfate, carbonaceous species (black carbon and polycyclic aromatic hydrocarbons), and trace elements in fine atmospheric aerosols collected at subtropical islands in the East China Sea. J Geophys Res Atmos (1984–2012) 109

  • Katz M, Chan C, Tosine H, Sakuma T (1979) Relative rates of photochemical and biological oxidation of polynuclear aromatic hydrocarbons. USA: Polynuclear Aromatic Hydrocarbons. Ann Arbor Science, Ann Arbor

  • Kim JY, Lee JY, Choi SD, Kim YP, Ghim YS (2012) Gaseous and particulate polycyclic aromatic hydrocarbons at the Gosan background site in East Asia. Atmos Environ 49:311–319

    Article  CAS  Google Scholar 

  • Lee SC, Ho KF, Chan LY, Zielinska B, Chow JC (2001) Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmos Environ 35:5949–5960

    Article  CAS  Google Scholar 

  • Lee JY, Kim YP, Kaneyasu N, Kumata H, Kang C-H (2008) Particulate PAHs levels at Mt. Halla site in Jeju Island, Korea: regional background levels in northeast Asia. Atmos Res 90:91–98

    Article  CAS  Google Scholar 

  • Lee JY, Kim YP, Kang C-H (2011) Characteristics of the ambient particulate PAHs at Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site. Atmos Res 99:50–56

    Article  CAS  Google Scholar 

  • Ligocki MP, Pankow JF (1989) Measurements of the gas/particle distributions of atmospheric organic compounds. Environ Sci Technol 23:75–83

    Article  CAS  Google Scholar 

  • Lohmann R, Harner T, Thomas GO, Jones KC (2000) A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environ Sci Technol 34:4943–4951

    Article  CAS  Google Scholar 

  • Ma WL, Sun DZ, Shen WG, Yang M, Qi H, Liu LY et al (2011) Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic Games. Environ Pollut 159:1794–1801

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8:131–136

    CAS  Google Scholar 

  • Manoli E, Samara C, Konstantinou I, Albanis T (2000) Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece. Chemosphere 41:1845–1855

    Article  CAS  Google Scholar 

  • Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961

    Article  CAS  Google Scholar 

  • Marchand N, Besombes J, Chevron N, Masclet P, Aymoz G, Jaffrezo J (2004) Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns. Atmos Chem Phys 4:1167–1181

    Article  CAS  Google Scholar 

  • Mostert MM, Ayoko GA, Kokot S (2010) Application of chemometrics to analysis of soil pollutants. TrAC Trends Anal Chem 29:430–445

    Article  CAS  Google Scholar 

  • Neff JM (2002) Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Elsevier

  • Nielsen T, Seitz B, Ramdahl T (1984) Occurrence of nitro-PAH in the atmosphere in a rural area. Atmos Environ (1967) 18:2159–2165

    Article  CAS  Google Scholar 

  • Odabasi M, Cetin E, Sofuoglu A (2006) Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas–particle partitioning in an urban atmosphere. Atmos Environ 40:6615–6625

    Article  CAS  Google Scholar 

  • Offenberg JH, Baker JE (2002) The influence of aerosol size and organic carbon content on gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Atmos Environ 36:1205–1220

    Article  CAS  Google Scholar 

  • Ohura T, Amagai T, Fusaya M, Matsushita H (2004) Spatial distributions and profiles of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan. Environ Sci Technol 38:49–55

    Article  CAS  Google Scholar 

  • Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M et al (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83:1588–1596

    Article  CAS  Google Scholar 

  • Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ (1967) 21:2275–2283

    Article  CAS  Google Scholar 

  • Pankow JF (1994a) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188

    Article  CAS  Google Scholar 

  • Pankow JF (1994b) An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ 28:189–193

    Article  CAS  Google Scholar 

  • Pankow JF (1998) Further discussion of the octanol/air partition coefficient Koa as a correlating parameter for gas/particle partitioning coefficients. Atmos Environ 32:1493–1497

    Article  CAS  Google Scholar 

  • Pankow JF, Bidleman TF (1992) Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle paritioning and vapor pressure—I. theory and analysis of available data. Atmos Environ Part A Gen Top 26:1071–1080

    Article  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Park S-U, Kim J-G, Jeong M-J, Song B-J (2011) Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis. Arch Environ Contam Toxicol 60:576–589

    Article  CAS  Google Scholar 

  • Pongpiachan S, Ho KF, Cao J (2013) Estimation of gas-particle partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. Asian Pac J Cancer Prev 14:2461–2476

    Article  Google Scholar 

  • Pongpiachan S, KinFai H, JunJi C (2014) Effects of biomass and agricultural waste burnings on diurnal variation and vertical distribution of OC/EC in Hat-Yai City, Thailand. Asian J Appl Sci 7:360–374

    Article  CAS  Google Scholar 

  • Pongpiachan S, Hattayanone M, Choochuay C, Mekmok R, Wuttijak N, Ketratanakul A (2015) Enhanced PM10 bounded PAHs from shipping emissions. Atmos Environ 108:13–19

    Article  CAS  Google Scholar 

  • Ramdahl T (1983) Retene—a molecular marker of wood combustion in ambient air. Nature 306:580–582

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Rolph GD (2013) Environmental applications and display system (READY) website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD

  • Simcik MF, Zhang H, Eisenreich SJ, Franz TP (1997) Urban contamination of the Chicago/Coastal Lake Michigan atmosphere by PCBs and PAHs during AEOLOS. Environ Sci Technol 31:2141–2147

    Article  CAS  Google Scholar 

  • Simcik MF, Franz TP, Zhang H, Eisenreich SJ (1998) Gas-particle partitioning of PCBs and PAHs in the Chicago urban and adjacent coastal atmosphere: states of equilibrium. Environ Sci Technol 32:251–257

    Article  CAS  Google Scholar 

  • Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    Article  CAS  Google Scholar 

  • Terzi E, Samara C (2004) Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece. Environ Sci Technol 38:4973–4978

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Tsai F, Tu J-Y, Hsu S-C, Chen W-N (2014) Case study of the Asian dust and pollutant event in spring 2006: source, transport, and contribution to Taiwan. Sci Total Environ 478:163–174

    Article  CAS  Google Scholar 

  • Wang S-H, Tsay S-C, Lin N-H, Hsu NC, Bell SW, Li C et al (2011a) First detailed observations of long-range transported dust over the northern South China Sea. Atmos Environ 45:4804–4808

    Article  CAS  Google Scholar 

  • Wang W, Simonich SLM, Wang W, Giri B, Zhao J, Xue M et al (2011b) Atmospheric polycyclic aromatic hydrocarbon concentrations and gas/particle partitioning at background, rural village and urban sites in the North China Plain. Atmos Res 99:197–206

    Article  CAS  Google Scholar 

  • Wang Z, Na G, Ma X, Fang X, Ge L, Gao H et al (2013) Occurrence and gas/particle partitioning of PAHs in the atmosphere from the North Pacific to the Arctic Ocean. Atmos Environ 77:640–646

    Article  CAS  Google Scholar 

  • Wang C, Wang X, Gong P, Yao T (2014) Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: spatial distribution, source and air–soil exchange. Environ Pollut 184:138–144

    Article  CAS  Google Scholar 

  • Wania F, MacKay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396A

    Article  CAS  Google Scholar 

  • Wu Y, Yang L, Zheng X, Zhang S, Song S, Li J et al (2014) Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci Total Environ 470:76–83

    Article  Google Scholar 

  • Yan W, Chi J, Wang Z, Huang W, Zhang G (2009) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ Pollut 157:1823–1830

    Article  CAS  Google Scholar 

  • Yang H-H, Chen C-M (2004) Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan. Chemosphere 56:879–887

    Article  CAS  Google Scholar 

  • Yang H-H, Lai S-O, Hsieh L-T, Hsueh H-J, Chi T-W (2002) Profiles of PAH emission from steel and iron industries. Chemosphere 48:1061–1074

    Article  CAS  Google Scholar 

  • Yang X-Y, Okada Y, Tang N, Matsunaga S, Tamura K, Lin J-M et al (2007) Long-range transport of polycyclic aromatic hydrocarbons from China to Japan. Atmos Environ 41:2710–2718

    Article  CAS  Google Scholar 

  • Yang Y, Guo P, Zhang Q, Li D, Zhao L, Mu D (2010) Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China. Sci Total Environ 408:2492–2500

    Article  CAS  Google Scholar 

  • Yen M-C, Peng C-M, Chen T-C, Chen C-S, Lin N-H, Tzeng R-Y et al (2013) Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmos Environ 78:35–50

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

  • Zhang Y, Guo C-S, Xu J, Tian Y-Z, Shi G-L, Feng Y-C (2012) Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res 46:3065–3073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Science Council (Ministry of Science and Technology) under contract number 99-2611-M291-001 and gratefully acknowledge the US NOAA Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model on the READY website (http://ready.arl.noaa.gov). We also highly appreciate two anonymous reviewers who gave constructive comments to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fung-Chi Ko.

Additional information

Responsible editor: Constantini Samara

Highlights

1. Atmospheric particle sources and rainfall scavenging mechanisms could be contributing to seasonal variations in PAH concentrations.

2. Long-range transport driven by monsoon system was the main influence of atmospheric profiles and gas-particle partitioning of PAHs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JO., Ko, FC., Lee, CL. et al. Atmospheric polycyclic aromatic hydrocarbons (PAHs) of southern Taiwan in relation to monsoons. Environ Sci Pollut Res 23, 15675–15688 (2016). https://doi.org/10.1007/s11356-016-6751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6751-9

Keywords

Navigation