Skip to main content
Log in

Short-term Laboratory Adsorption of Zinc and Cadmium Ions from Aqueous Solutions to Ground Canna indica Roots

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The current work presents the competitive removal of zinc (Zn) and cadmium (Cd) ions by adsorption using the roots of the Canna indica plant in order to study the metal-plant interactions at the microscopic scale that occur in constructed wetlands and phytoremediation processes. The sorption process was described in association with the data generated from Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Kinetic variables and constants were calculated, optimized, and analyzed. The pseudo-second-order kinetic model provided the best fit to the experimental data and the sorption equilibrium was achieved in nearly 300 min. The equilibrium isotherms of zinc and cadmium were described using the nonlinear models of Langmuir, Freundlich, Sips, and their multi-component equivalents. The dimensionless separation factor (RL) showed that the adsorption system in this study is favorable. The Langmuir monolayer adsorption capacities were 71.20 and 298.6 μg g−1 for Zn2+ and Cd2+ respectively. The parameters of the metal adsorption isotherm fitted better to the extended Freundlich isotherm. This study reveals the association between surface properties and the biosorption capacity of heavy metals by plant roots on the one hand and the implication of the ion exchange mechanism through chemisorption on the uptake of Zn2+ and Cd2+ ions from aqueous solution by this adsorbent on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abbas, A., Hussain, M. A., Amin, M., Sher, M., Tahir, M. N., & Tremel, W. (2015). Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater. Journal of Environmental Sciences, 37, 51–58. https://doi.org/10.1016/j.jes.2015.04.013

    Article  CAS  Google Scholar 

  • Abbas, A., Hussain, M. A., Sher, M., Irfan, M. I., Tahir, M. N., Tremel, W., Hussain, S. Z., & Hussain, I. (2017). Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. International Journal of Biological Macromolecules, 102, 170–180. https://doi.org/10.1016/j.ijbiomac.2017.04.024

    Article  CAS  Google Scholar 

  • Abdelwaheb, M., Ayeb, A., Dhaouadi, H., Dridi-Dhaouadi, S., & Peña, A. (2022). Risk of water contamination: adsorption of dimethoate on a Mediterranean soil. International Journal of Environmental Studies, 1-20. https://doi.org/10.1080/00207233.2022.2058244

  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  Google Scholar 

  • Ali, A., Ajaz Hussain, M., Abbas, A., Tahir Haseeb, M., Azhar, I., Muhammad, G., Hussain, S.Z, Hussain, I., Alotaibi, N. F. (2023). Succinylated Salvia spinosa hydrogel: Modification, characterization, cadmium-uptake from spiked high-hardness groundwater and statistical analysis of sorption data. Journal of Molecular Liquids, 376, 121438. https://doi.org/10.1016/j.molliq.2023.121438

  • Clemens, S., Palmgren, M. G., & Krämer, U. (2002). A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315. https://doi.org/10.1016/S1360-1385(02)02295-1

    Article  CAS  Google Scholar 

  • Dhouibi, N., Binous, H., Dhaouadi, H., & Dridi-Dhaouadi, S. (2020). Hydrodistillation residues of Centaurea nicaeensis plant for copper and zinc ions removal: Novel concept for waste re-use. Journal of Cleaner Production, 261, 121106. https://doi.org/10.1016/j.jclepro.2020.121106

    Article  CAS  Google Scholar 

  • Ebrahimzadeh Rajaei, G., Aghaie, H., Zare, K., & Aghaie, M. (2013). Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: Kinetics and isotherm studies. Research on Chemical Intermediates, 39(8), 3579–3594. https://doi.org/10.1007/s11164-012-0864-7

    Article  CAS  Google Scholar 

  • Farid-ul-Haqa, M., Alia, A., Hussain, M. A., Abbasa, A., Kausarb, F., Aminc, H. M., Shera, M., Hussain, S. Z., & Hussain, I. (2021). Chemical modification of a polysaccharide from Artemisia vulgaris engenders a supersorbent for the removal of Cd2+ from spiked high-hardness groundwater. Desalination and Water Treatment, 212, 129–142.

    Article  Google Scholar 

  • Fawzy, M., Nasr, M., Adel, S., Nagy, H., & Helmi, S. (2016). Environmental approach and artificial intelligence for Ni(II) and Cd(II) biosorption from aqueous solution using Typha domingensis biomass. Ecological Engineering, 95, 743–752. https://doi.org/10.1016/j.ecoleng.2016.07.007

    Article  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11). https://doi.org/10.3390/ijerph17113782

  • Ghezali, K., Bentahar, N., Barsan, N., Nedeff, V., & Moșneguțu, E. (2022). Potential of canna indica in vertical flow constructed wetlands for heavy metals and nitrogen removal from algiers refinery wastewater. Sustainability, 14(8). https://doi.org/10.3390/su14084394

  • Girdhar, M., Tabassum, Z., Singh, K., & Mohan, A. (2022). A review on the resistance and accumulation of heavy metals by different microbial strains. Biodegradation Technology of Organic and Inorganic Pollutants, 219.

  • Girish, C. (2017). Various isotherm models for multicomponent adsorption: A review. Int. J. Civ. Eng. Technol, 8(10), 80–86.

    Google Scholar 

  • Hussain, M. A., Abbas, A., Habib, M. G., Ali, A., Farid-ul-Haq, M., Hussain, M., Shafiq, Z., & Irfan, M. I. (2021). Adsorptive removal of Ni (II) and Co (II) from aqueous solution using succinate-bonded polysaccharide isolated from Artemisia vulgaris seed mucilage. Desalination and Water Treatment, 231, 182–195.

    Article  CAS  Google Scholar 

  • Hsini, N., Abdelwaheb, M., Dhaouadi, H., & Dridi-Dhaouadi, S. (2020). Valorization of solid wastes from Dittrichia essential oil extraction as biosorbents for cadmium removal: biosorbent characterizations and isotherm modeling. International Journal of Environmental Science and Technology, 17(11), 4611–4622. https://doi.org/10.1007/s13762-020-02803-z

    Article  CAS  Google Scholar 

  • Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164(1), 161–171. https://doi.org/10.1016/j.jhazmat.2008.07.141

    Article  CAS  Google Scholar 

  • Jamwal, P., Raj, A. V., Raveendran, L., Shirin, S., Connelly, S., Yeluripati, J., Richards, S., Rao, L., Helliwell, R., & Tamburini, M. (2021). Evaluating the performance of horizontal sub-surface flow constructed wetlands: A case study from southern India. Ecological Engineering, 162, 106170. https://doi.org/10.1016/j.ecoleng.2021.106170

    Article  Google Scholar 

  • Jiang, X., Zhang, S., Yin, X., Tian, Y., Liu, Y., Deng, Z., & Wang, L. (2023). Contrasting effects of a novel biochar-microalgae complex on arsenic and mercury removal. Ecotoxicology and Environmental Safety, 262, 115144. https://doi.org/10.1016/j.ecoenv.2023.115144

    Article  CAS  Google Scholar 

  • Karungamye, P. N. (2022). Potential of Canna indica in constructed wetlands for wastewater treatment: A review. Conservation, 2(3), 499–513. https://doi.org/10.3390/conservation2030034

    Article  Google Scholar 

  • Khan, F. S. A., Mubarak, N. M., Tan, Y. H., Khalid, M., Karri, R. R., Walvekar, R., Abdullah, E. C., Nizamuddin, S., & Mazari, S. A. (2021). A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. Journal of Hazardous Materials, 413, 125375. https://doi.org/10.1016/j.jhazmat.2021.125375

    Article  CAS  Google Scholar 

  • Komkiene, J., & Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [cadmium(II), copper(II), lead(II), zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, 13(2), 471–482. https://doi.org/10.1007/s13762-015-0873-3

    Article  CAS  Google Scholar 

  • Kumar, P. S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., Murugesan, A., & Sivanesan, S. (2012). Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean Journal of Chemical Engineering, 29(6), 756–768. https://doi.org/10.1007/s11814-011-0259-2

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Lodhi, B. A., Abbas, A., Hussain, M. A., Hussain, S. Z., Sher, M., & Hussain, I. (2019). Design, characterization and appraisal of chemically modified polysaccharide based mucilage from Ocimum basilicum (basil) seeds for the removal of Cd(II) from spiked high-hardness ground water. Journal of Molecular Liquids, 274, 15–24. https://doi.org/10.1016/j.molliq.2018.10.056

    Article  CAS  Google Scholar 

  • Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., & Carrasco-Marin, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 37(8), 1215–1221. https://doi.org/10.1016/S0008-6223(98)00317-0

    Article  CAS  Google Scholar 

  • Lorenz, P., Meier, L., & Kahr, G. (1999). Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and clay minerals, 47(3), 386–388.

    Article  Google Scholar 

  • Luo, X., Zhang, Z., Zhou, P., Liu, Y., Ma, G., & Lei, Z. (2015). Synergic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2+) onto activated carbon and its mechanisms. Journal of Industrial and Engineering Chemistry, 27, 164–174. https://doi.org/10.1016/j.jiec.2014.12.031

    Article  CAS  Google Scholar 

  • Mahmood, T., Malik, S. A., & Hussain, S. T. (2010). Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. BioResources, 5(2), 1244–1256.

    Article  CAS  Google Scholar 

  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. In R. C. Sobti, N. K. Arora, & R. Kothari (Eds.), Environmental Biotechnology: For Sustainable Future (pp. 103–125). Springer Singapore.

    Chapter  Google Scholar 

  • Mustapha, H. I., van Bruggen, J. J. A., & Lens, P. N. L. (2018). Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna. Nigeria. International Journal of Phytoremediation, 20(1), 44–53. https://doi.org/10.1080/15226514.2017.1337062

    Article  CAS  Google Scholar 

  • Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 286. https://doi.org/10.1007/s42452-021-04301-4

    Article  CAS  Google Scholar 

  • Peng, L., Chen, S., Song, H., Zheng, M., Luo, S., & Tie, B. (2023). Quick removal of suspended cadmium from irrigation water using water hyacinth (Eichhornia crassipes)-phosphoric fertilizer. Water, Air, & Soil Pollution, 234(6), 356. https://doi.org/10.1007/s11270-023-06365-x

    Article  CAS  Google Scholar 

  • Pera-Titus, M. (2011). Thermodynamic analysis of type VI adsorption isotherms in MFI zeolites. The Journal of Physical Chemistry, 115(8), 3346–3357. https://doi.org/10.1021/jp109449q

    Article  CAS  Google Scholar 

  • Sabeen, M., Mahmood, Q., Irshad, M., Fareed, I., Khan, A., Ullah, F., Hussain, J., Hayat, Y., & Tabassum, S. (2013). Cadmium phytoremediation by <i>Arundo donax</i> L. from contaminated soil and water. BioMed Research International, 2013, 324830. https://doi.org/10.1155/2013/324830

  • Sanka, P. M., Rwiza, M. J., & Mtei, K. M. (2020). Removal of selected heavy metal ions from industrial wastewater using rice and corn husk biochar. Water, Air, & Soil Pollution, 231(5), 244. https://doi.org/10.1007/s11270-020-04624-9

    Article  CAS  Google Scholar 

  • Sears, G. W. (1956). Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Analytical Chemistry, 28(12), 1981–1983. https://doi.org/10.1021/ac60120a048

    Article  CAS  Google Scholar 

  • Sen Gupta, S., & Bhattacharyya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87(1), 46–58. https://doi.org/10.1016/j.jenvman.2007.01.048

    Article  CAS  Google Scholar 

  • Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. https://doi.org/10.1016/j.jece.2021.105688

    Article  CAS  Google Scholar 

  • Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16(5), 490–495. https://doi.org/10.1063/1.1746922

    Article  CAS  Google Scholar 

  • Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., Galán, J., & García, J. (2014). Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chemical Engineering Journal, 240, 443–453.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2008). Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2), 172–184. https://doi.org/10.1016/j.colsurfa.2007.06.048

    Article  CAS  Google Scholar 

  • Subhashini, V., & Swamy, A. (2014). Phytoremediation of metal (Pb, Ni, Zn, Cd and Cr) contaminated soils using Canna indica. Current World. Environment, 9(3), 780–784. https://doi.org/10.12944/CWE.9.3.26

    Article  Google Scholar 

  • Szatanik-Kloc, A., Szerement, J., & Józefaciuk, G. (2017). The role of cell walls and pectins in cation exchange and surface area of plant roots. Journal of Plant Physiology, 215, 85–90. https://doi.org/10.1016/j.jplph.2017.05.017

    Article  CAS  Google Scholar 

  • Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021). A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), 1570–1610. https://doi.org/10.1002/tcr.202000153

    Article  CAS  Google Scholar 

  • Verma, L., & Singh, J. (2019). Synthesis of novel biochar from waste plant litter biomass for the removal of Arsenic (III and V) from aqueous solution: A mechanism characterization, kinetics and thermodynamics. Journal of Environmental Management, 248, 109235. https://doi.org/10.1016/j.jenvman.2019.07.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues and the technical staff at the Laboratory of Hydrocarbons Technology, and the Laboratory of Treatment and Forming of Fibrous Polymers for their invaluable assistance.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ghezali.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezali, K., Abdelwaheb, M., Nedeff, V. et al. Short-term Laboratory Adsorption of Zinc and Cadmium Ions from Aqueous Solutions to Ground Canna indica Roots. Water Air Soil Pollut 234, 729 (2023). https://doi.org/10.1007/s11270-023-06740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06740-8

Keywords

Navigation