Skip to main content
Log in

Evidence of population genetic effects in Peromyscus melanophrys chronically exposed to mine tailings in Morelos, Mexico

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Effects of environmental chemical pollution can be observed at all levels of biological organization. At the population level, genetic structure and diversity may be affected by exposure to metal contamination. This study was conducted in Huautla, Morelos, Mexico in a mining district where the main contaminants are lead and arsenic. Peromyscus melanophrys is a small mammal species that inhabits Huautla mine tailings and has been considered as a sentinel species. Metal bioaccumulation levels were examined by inductively coupled plasma mass spectrometry and genetic analyses were performed using eight microsatellite loci in 100 P. melanophrys individuals from 3 mine tailings and 2 control sites. The effect of metal bioaccumulation levels on genetic parameters (population and individual genetic diversity, genetic structure) was analyzed. We found a tissue concentration gradient for each metal and for the bioaccumulation index. The highest values of genetic differentiation (Fst and Rst) and the lowest number of migrants per generation (Nm) were registered among the exposed populations. Genetic distance analyses showed that the most polluted population was the most genetically distant among the five populations examined. Moreover, a negative and significant relationship was detected between genetic diversity (expected heterozygosity and internal relatedness) and each metal concentration and for the bioaccumulation index in P. melanophrys. This study highlights that metal stress is a major factor affecting the distribution and genetic diversity levels of P. melanophrys populations living inside mine tailings. We suggest the use of genetic population changes at micro-geographical scales as a population level biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos W, Worthington W, Fullard K, Burger TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 68:2021–2027

    Article  Google Scholar 

  • Antolin MF, Van Horne B, Berger MD, Holloway AK, Roach JL, Weeks RD (2001) Effective population size and genetic structure of a Piute ground squirrel (Spermophilus mollis) population. Can J Zool 79:26–34

    Google Scholar 

  • Arif I, Khan H (2009) Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiv Conserv 32:9–17

    Google Scholar 

  • Belfiore N, Anderson S (1998) Genetic patterns as a tool for monitoring and assessment of environmental impacts: the example of genetic ecotoxicology. Environ Monit Assess 51:465–479

    Article  Google Scholar 

  • Belfiore N, Anderson S (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489:97–122

    Article  CAS  Google Scholar 

  • Bengtsson G, Nordström S, Rundgren S (1983) Population density and tissue metal concentration of lumbricids in forest soils near a brass mill. Environ Pollut A 30:87–108

    Article  CAS  Google Scholar 

  • Benton M, Malott M, Trybula J, Dean D, Guttman S (2002) Genetic effects of mercury contamination on aquatic snail populations: allozyme genotypes and DNA strand breakage. Environ Toxicol Chem 21:584–589

    Article  CAS  Google Scholar 

  • Berckmoes V, Scheirs J, Jordaens K, Blust R, Backeljau T, Verhagen R (2005) Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus Sylvaticus) populations. Environ Toxicol Chem 24:2898–2907

    Article  CAS  Google Scholar 

  • Bernard A (2008) Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health Part A 71:1259–1265

    Article  CAS  Google Scholar 

  • Berthier K, Galan M, Foltete JC, Charbonnel N, Cosson JF (2005) Genetic structure of the cyclic fossorial water voles (Arvicola terrestris): landscape and demographic influences. Mol Ecol 14:2861–2871

    Article  CAS  Google Scholar 

  • Berthier K, Charbonnel N, Galan M, Cosson JF (2006) Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol Ecol 15:2665–2676

    Article  CAS  Google Scholar 

  • Bervoets L, Blust R (2003) Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environ Pollut 126:9–19

    Article  CAS  Google Scholar 

  • Bickham JW (2011) The four cornerstones of evolutionary toxicology. Ecotoxicology 20:497–502

    Article  CAS  Google Scholar 

  • Bickham J, Smolen M (1994) Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology. Environ Health Persp 102:25–28

    Article  Google Scholar 

  • Bickham J, Sandhu S, Hebert P, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51

    Article  CAS  Google Scholar 

  • Bourret V, Couture P, Campbell P, Bernatchez L (2008) Evolutionary ecotoxicology of wild yellow perch (Percha flavescens) populations chronically exposed to a polymetallic gradient. Aquat Toxicol 86:76–90

    Article  CAS  Google Scholar 

  • Brooks S, Lyon B, Goodsir F, Bignell J, Thain J (2009) Biomarker responses in mussels, an integrated approach to biological effects measurements. J Toxicol Env Health A 72:196–208

    Article  CAS  Google Scholar 

  • Brown AR, Hosken DJ, Balloux F, Bickley LK, LePage G, Owen SF, Hetheridge MJ, Tyler CR (2009) Genetic variation, inbreeding and chemical exposure–combined effects in wildlife and critical considerations for ecotoxicology. Phil Trans R Soc B 364:3377–3390

    Article  Google Scholar 

  • Burger J (1995) Heavy metal and selenium levels in feathers of herring gulls (Larus argentatus): differences due to year, gender, and age at Captree, Long Island. Environ Monit Assess 38:37–50

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (1996) Heavy metal and selenium levels in Franklin’s gull (Larus pipixcan): parents and their eggs. Arch Environ Contam Toxicol 30:487–491

    Article  CAS  Google Scholar 

  • Cadena M (2003) Efecto de la perturbación y estacionalidad en la comunidad de roedores en una salva baja caducifolia en Morelos, México. Dissertation. Universidad de las Américas de Puebla.

  • Carleton MD, Musser GG (2005) Order Rodentia. In: Wilson DE, Reeder DM (eds) Mammal species of the world a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp 894–1531

    Google Scholar 

  • Chirhart S, Honeycutt R, Greenbaum I (2000) Microsatellite markers for the deer mouse Peromyscus maniculatus. Mol Ecol 9:1661–1686

    Article  Google Scholar 

  • Chirhart S, Honeycutt R, Greenbaum I (2005) Microsatellite variation and evolution in the Peromyscus maniculatus species group. Molec Phylogenet Evol 34:408–415

    Article  CAS  Google Scholar 

  • Coues E (1874) Synopsis of the Muridae in North America. Proc Acad Nat Sci Phila 3:173–196

    Google Scholar 

  • Dauwe T, Janssens E, Kempenaers B, Eens M (2004) The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs. Environ Pollut 129:125–129

    Article  CAS  Google Scholar 

  • Deng J, Liao B, Ye M, Deng D, Lan C, Shu W (2007) The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297:83–92

    Article  CAS  Google Scholar 

  • Dmowski K, Kozakiewicz M, Kozakiewicz A (1995) Ecological effects of heavy metal pollution (Pb, Cd, Zn) on small mammal populations and communities. B Pol Acad Biol Sci 43:1–10

    CAS  Google Scholar 

  • Dorado O, Maldonado B, Arias D, Sorani V, Ramírez R, Leyva E (2005) Programa de conservación y manejo Reserva de la Biosfera Sierra de Huautla. Comisión Nacional de Áreas Naturales. Protegidas, México

    Google Scholar 

  • EPA Environmental Protection Agency (2000). Innovative remediation technologies: Field scale demonstration projects in North America

  • Erry BV, Macnair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Britain. Environ Pollut 110:179–187

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  Google Scholar 

  • Folkeson L, Nyholm HEI, Tyler G (1990) Influence of acidity and other soil properties on metal concentrations in forest plants and animals. Sci Total Environ 96:211–233

    Article  CAS  Google Scholar 

  • Fratini S, Zane L, Ragionieri L, Vannini M, Cannicc S (2008) Relationship between heavy metal accumulation and genetic variability decrease in the intertidial crab Pachygrapsus marmoratus (Decapoda; Grapsidae). Estuar Coast Shelf S 79:679–686

    Article  Google Scholar 

  • Gardeström J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson B, Breitholtz M (2008) Evidence of population genetic effects of long-term exposure to contaminated sediments: a multi-endpoint study with copepods. Aquat Toxicol 86:426–436

    Article  Google Scholar 

  • Gardner-Santana LC, Norris DE, Fornadel CM, Hinson ER, Klein SL, Glass GE (2009) Comensal ecology, urban landscapes and their influence on the genetic characteristics of city-dwelling Norway rats (Rattus norvegicus). Mol Ecol 18:2766–2778

    Article  CAS  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson F (2008) Spatial correlation structure of a small rodent in heterogeneous landscape. Mol Ecol 17:4619–4629

    Article  CAS  Google Scholar 

  • Hall ER (1981) The mammals of North America. John Wiley and Sons, New York

    Google Scholar 

  • Hebert PM, Murdoch-Luiker M (1996) Genetic effects of contaminant exposure-towards an assessment of impacts on animal populations. Sci Total Environ 191:23–58

    Article  CAS  Google Scholar 

  • INEGI (2004) Instituto Nacional de Estadística y Geografía. Información Geográfica del Estado de. Morelos, México

    Google Scholar 

  • INEGI (2009) Instituto Nacional de Estadística y Geografía. Información Geográfica del Estado de. Morelos, México

    Google Scholar 

  • Jiang ZF, HuangSZ HYL, Zhao JZ, Fu JJ (2011) Physiological response of Cu mine tailing remediation of Paulownia fortunei (Seem) Hemsl. Ecotoxicology dpoi:. doi:10.1007/s10646-011-0836-5

  • Kim S, Rodriguez M, Suh J, Song J (2003) Emergent effects of heavy metal pollution at a population level: Littorina brevicula a study case. Mar Pollut Bull 46:74–80

    Article  Google Scholar 

  • Klaper R, Rees CH, Drevnick P, Weber D, Sandheinrich M, Carvan M (2006) Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure. Environ Health Perspect 114:1337–1343

    Article  CAS  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:455–1460

    Article  Google Scholar 

  • Laurinolli M, Bendell-Young L (1996) Copper, zinc, and cadmium concentrations in Peromyscus maniculatus sampled near an abandoned copper mine. Environ Contam Toxicol 30:481–486

    Article  CAS  Google Scholar 

  • Layne JN (1968) Ontogeny. In: King JA (ed) Biology of Peromyscus (Rodentia). The American Society of Mammalogists, Provo, Utah, pp 148–253, Publication number 2

    Google Scholar 

  • Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 285–300

    Google Scholar 

  • Levengood J, Heske E (2008) Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated wetland. Sci Total Environ 389:320–328

    Article  CAS  Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Article  Google Scholar 

  • Ma W, Denneman W, Faber J (1991) Hazardous exposure of ground-living small mammals to cadmium and lead in contaminated terrestrial ecosystems. Arch Environ Contam Toxicol 20:266–270

    Article  CAS  Google Scholar 

  • Maes GE, Raeymaekers JAM, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert FAM (2005) The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquat Toxicol 73:99–114

    Article  CAS  Google Scholar 

  • Mares MA, Ernest KA (1995) Population and community ecology of small mammals in a gallery forest of central Brazil. J Mammal 76:750–768

    Article  Google Scholar 

  • Matson C, Lambert M, McDonald T, Autenrieth R, Donnelly K, Islamzadeh A, Politov D, Bickham J (2006) Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs (Rana ridibunda) of Azerbaijan. Environ Health Persp 114:547–552

    Article  CAS  Google Scholar 

  • Medina M, Correa J, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67:2105–2114

    Article  CAS  Google Scholar 

  • Miller MP (2000) Tools for populations genetic analyses (TFPGA) 1.3: A window program for the analyses of allozyme and molecular population genetic data computer software distributed by author.

  • Mills SL, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Coserv Biol 10:150–158

    Google Scholar 

  • Morales EO, Carrillo FC (2010) Plan municipal de desarrollo de Tlaquiltenango, Morelos. H. Ayuntamiento de Tlaquiltenango, Morelos. http://www.tlaquiltenango.gob.mx/Transparencia/Obligaciones_Contable_Administrativas/OCA15_Plan_desarrollo_estatal%20doc.pdf. Accessed 19 September 2012

  • Morgan AJ, Kille P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096

    Article  CAS  Google Scholar 

  • Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (Peromyscus leucopus). Can J Zool 79:285–295

    Google Scholar 

  • Mullen L, Hirschmann R, Prince K, Glenn T, Dewey M, Hoekstra H (2006) Sixty polymorphic microsatellite markers for the old field mouse developed in Peromyscus polionotus and Peromyscus maniculatus. Mol Ecol Notes 6:36–40

    Article  CAS  Google Scholar 

  • Mussali-Galante P (2008) Estudio sobre la inducción de daño al ADN en sangre periférica de individuos expuestos a metales en al agua de bebida, en la población de Huautla, Morelos. Dissertation, Universidad Nacional Autónoma de México

  • Nacci D, Hoffman GR (2008) Genetic variation in population-level ecological risk assessment. In: Barnthouse LW, Munns WR, Sorensen MT Jr (eds) Population-level ecological risk assessment. Taylor and Francis, New York, pp 93–112

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Pascoe GA, Blanchet RJ, Linder G, Lande R (1994) Bioavailability of metals and arsenic to small mammals at a mining waste-contaminated wetland. Genetics and demography in biological conservation. Science 241:455–1460

    Google Scholar 

  • Peakall DB (1992) Animal biomarkers as pollution indicators, Ecotoxicological Series No.1. Chapman & Hall, London

    Book  Google Scholar 

  • Peakall R, Lindenmayer D (2006) Genetic insights into population recovery following experimental perturbation in a fragmented landscape. Biol Conserv 132:520–532

    Article  Google Scholar 

  • Peakall R, Ruibal M, Lindmeyer D (2003) Spatial correlation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:118–295

    Google Scholar 

  • Phelps KL, McBee K (2009) Ecological characteristics of small mammal communities at a superfund site. Amer Midl Nat 161:57–68

    Article  Google Scholar 

  • Pra D, Rech-Frenke SI, Giulian R, Yoneama ML, Ferraz-Diaz J, Erdtmann B, Pegas-Henriques JA (2008) Genotoxicity and mutagenicity of iron and copper in mice. Biometals 21:289–297

    Article  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ricketts HJ, Morgan AJ, Spurgeon DJ, Kille P (2004) Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology. Ecotox Environ Safety 57:4–10

    Article  CAS  Google Scholar 

  • Rogstad S, Keane B, Collier M (2003) Minisatellite DNA mutation rate in dandelions increases with leaf-tissue concentrations of Cr, Fe, Mn, and Ni. Environ Toxicol Chem 22:2093–2099

    Article  CAS  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. Fondo de Cultura Económica, Mexico

    Google Scholar 

  • Sánchez CH, Romero MLA (1992) Mastofauna silvestre del ejido el Limón, municipio de Tepalcingo, Morelos. Univ Cienc Tec 2:87–95

    Google Scholar 

  • Scheirs J, Coan A, Covaci A, Beernaert J, Kayawe M, Caturla M, Wolf H, Baert P, Van Oostveldt P, Verhagen R, Blust R, Coen W (2006) Genotoxicity in wood mice (Apodemus sylvaticus) along a pollution gradient: exposure age and gender-related effects. Environ Toxicol Chem 25:2154–2162

    Article  CAS  Google Scholar 

  • Secretaría de Economía (2011) Panorama minero del Estado de Morelos. Servicio Geológico Mexicano, serie panorama minero de los estados, Mexico

  • Sheffield SR, Sawicka-Kapusta K, Cohen JB, Rattner BA (2001) Rodentia and Lagomorpha. In: Shore RF, Rattner BA (eds) Ecotoxicology of wild mammals. John Wiley and Sons, New York, pp 215–314

    Google Scholar 

  • Shore RF, Douben PE (1994) Predicting ecotoxicological impacts of environmental contaminants on terrestrial small mammals. Rev Environ Contam T 134:49–89

    Article  CAS  Google Scholar 

  • Shugart L, Theodorakis C (1998) New trends in biological monitoring: application of biomarkers to genetic ecotoxicology. Biotherapy 11:119–127

    Article  CAS  Google Scholar 

  • Smith PN, Cobba GP, Harper FM, Adair BM, McMurry ST (2002) Comparison of white-footed mice and rice rats as biomonitors of polychlorinated biphenyl and metal contamination. Environ Pollut 119:261–268

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman, San Francisco, 573 p

    Google Scholar 

  • Sommer S (2003) Effects of habitat fragmentation and changes of dispersal behavior after a recent population decline on the genetic variability of noncoding and coding DNA of a monogamous Malagasy rodent. Mol Ecol 12:2845–2851

    Article  CAS  Google Scholar 

  • Staton J, Schizas N, Chandler G, Coull B, Quattro J (2001) Ecotoxicology and population genetics: the emergence of “phylogeographic and evolutionary ecotoxicology”. Ecotoxicology 10:217–222

    Article  CAS  Google Scholar 

  • Statsoft (2000) Statistica for Windows, v. 5.1. Computer program manual. Tulsa, StatSoft Inc

  • Stockley P, Searle JB, Macdonald DW, Jones CS (1993) Female multiple mating behavior in the common shrew as a strategy to reduce inbreeding. Proc R Soc Lond B 254:173–179

    Article  CAS  Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Moritz C, Hillis DM (eds) Molecular systematics. Sinauer Associated Inc, Massachusetts, pp 411–501

    Google Scholar 

  • Theodorakis C (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256

    Article  CAS  Google Scholar 

  • Tovar-Sánchez E, Cervantes LT, Martínez C, Rojas E, Valverde M, Ortiz-Hernández ML, Mussali-Galante P (2012) Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings. Environ Sci Pollut Res 19:1677–1686

    Article  Google Scholar 

  • Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A (2010) Relationship between heavy metals pollution and genetic diversity in Mediterranean population of the sandhopper Talitrus saltator (Montagu) (Crustaceae, Amphipoda). Environ Pollut 158:1638–1643

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T (2010) Metal pollution in ecosystems: ecotoxicology studies and risk assessment in the marine environment. Sci Adv Environ Toxicol Ecotox Issues. www.chem-tox-ecotox.org

  • Van de Zande L, Van Apeldoorn RC, Blijdenstein AF, De Jong D, Van Delden W, Bijlsma R (2000) Microsatellite analysis of population structure and genetic differentiation within and between population of the root vole, Microtus oeconomus in the Netherlands. Mol Ecol 9:1651–1656

    Article  Google Scholar 

  • Van Straalen N (1999) Genetic biodiversity in toxicant-stressed populations. Prog Environ Sci 1:195–201

    Google Scholar 

  • Van Straalen N, Timmermans M (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8:983–1002

    Article  Google Scholar 

  • Vargas V (2010) Estructura genética del roedor Baiomys musculus (Muridae) en la selva seca caducifolia en el estado de Morelos. Dissertation. Universidad Autónoma del Estado de Morelos

  • Volke ST, Velasco TA, De la Rosa PA, Solórzano OG (2004) Evaluación de tecnologías de remediación para suelos contaminados con metales. Etapa I. Secretaría de Medio Ambiente y Recursos Naturales, Mexico

    Google Scholar 

  • Volke ST, Velasco TA, De la Rosa PA, Solórzano OG (2005) Evaluación de tecnologías de remediación para suelos contaminados con metales. Etapa II. Secretaría de Medio Ambiente y Recursos Naturales, Mexico

    Google Scholar 

  • Vucetich LM, Vucetich JA, Cleckner LB, Gorski PR, Peterson RO (2001) Mercury concentrations in deer mouse (Peromyscus maniculatus) tissues from Isle Royale National Park. Environ Pollut 114:11–38

    Article  Google Scholar 

  • Weber JN, Peters M, Tsyusko O, Linnen C, Hagen C, Schable N, Tuberville T, Mckee A, Lance S, Jones K, Fisher H, Dewey M, Hoekstra H, Glenn C (2010) Five hundred microsatellite loci for Peromyscus. Conserv Genet 11:1243–1246

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associated Inc, Massachusetts

    Google Scholar 

  • Werre F, Ortiz-Hernández L (2000) Monografía geologica-minera del estado de Morelos. Consejo de Recursos Minerales, Mexico

    Google Scholar 

  • WHO World Health Organization (2007) Health risks of heavy metals from long range transboundary air pollution. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Yap CK, Tan SG, Ismail A, Omar H (2004) Allozyme polymorphisms and heavy metal levels in the green-lipped mussel Perna viridis (Linnaeus) collected from contaminated and uncontaminated sites in Malaysia. Environ Inter 30:39–46

    Article  CAS  Google Scholar 

  • Yap CK, Chua BH, Teh CH, Tan SG, Ismail A (2007) Primers of RAPD markers and heavy metal concentrations in Perna viridis (L.), collected from metal-contaminated and uncontaminated coastal waters: are they correlated with each other? Russian J Genet 43:544–550

    Article  CAS  Google Scholar 

  • Yap CK, Chong CM, Tan SG (2011) Allozyme polymorphism in the horseshoe crabs Carcinoscorpius rotundicauda collected from polluted intertidal area in Peninsular Malaysia. Environ Monit Assess 174:389–400

    Article  CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle T (1999) PopGene Ver. 1.31. University of Alberta, Canada

    Google Scholar 

  • Zar J (2010) Biostatistical analysis. Prentice-Hall, New-Jersey

    Google Scholar 

Download references

Acknowledgments

This study was supported by a scolarship to P.M.G. (102684) by the National Council of Science and Technology (CONACyT).This paper constitutes a partial fulfillment of the Graduate Program in Biological Sciences of the National Autonomous University of México (UNAM). The authors thank the “Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM). We also thank Edith Rivas, Guillermo Sánchez, Evodio Rendon Alquicira, Guadalupe Rangel Altamirano and Laura Márquez for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rojas.

Additional information

Responsible editor: Stuart Simpson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mussali-Galante, P., Tovar-Sánchez, E., Valverde, M. et al. Evidence of population genetic effects in Peromyscus melanophrys chronically exposed to mine tailings in Morelos, Mexico. Environ Sci Pollut Res 20, 7666–7679 (2013). https://doi.org/10.1007/s11356-012-1263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1263-8

Keywords

Navigation