Skip to main content
Log in

The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The genetic diversity and population structure of seven populations of Sedum alfredii growing in lead/zinc (Pb/Zn) mine spoils or in uncontaminated soils from eastern and southern China were investigated using random amplified polymorphic DNA (RAPD) technology. Four of the sampled sites were heavily contaminated with heavy metals (Zn, Cd, Pb), and extremely high concentrations of Zn, Cd, and Pb were found among these corresponding populations. A significant reduction of genetic diversity was detected in the mining populations. The reduction of genetic diversity could be derived from a bottleneck effect and might also be attributed to the prevalence of vegetative reproduction of the mining populations. Analysis of molecular variance (AMOVA) and the unweighted pair group method with arithmetic mean (UPGMA) tree derived from genetic distances further corroborated that the genetic differentiation between mine populations and uncontaminated populations was significant. Polymorphism with the heavy metal accumulation capability of S. alfredii probably due to the genetic variation among populations and heavy metal contamination could have more impact on the genetic diversity and population structure of S. alfredii populations than geographic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Anderson S, Sadinski W, Shugart I (1994) Genetic and molecular ecotoxicology: a research framework. Environ Health Perspect 102:3–8

    PubMed  Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou Laprade P, de Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetalliferous populations accumulate zinc and cadmium more effectively than those from metalliferous populations? New Phytol 146:225–233

    Article  Google Scholar 

  • Bickham JW, Smolen SL (1994) Somatic and heritable effect of environmental genotoxins and the emergence of evolutionary toxicology. Environ Health Perspect 102:25–28

    PubMed  Google Scholar 

  • Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1984) The importance of evolutionary ideas in ecology and vice versa. In: B Shorrocks (ed) Evolutionary ecology. Blackwell, Oxford, pp 1–25

    Google Scholar 

  • Bradshaw AD, Chadwick J (1980) The restoration of land. Blackwell, Oxford

    Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 55–94

    Google Scholar 

  • Bush EJ, Barrett SCH (1993) Genetics of mine invasions by Deschampsia cespitosa, Poaceae. Can J Bot 71:1336–1348

    Google Scholar 

  • Conte C, Muti I, Puglisi P, Ferrarini A, Regina G, Maestri E, Marmiroli N (1998) DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosphere 37:2739–2749

    Article  PubMed  CAS  Google Scholar 

  • Deng DM, Shu WS, Zhang J, Zou HL, Ye ZH, Wong MH (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147:381–386

    Article  PubMed  CAS  Google Scholar 

  • Dubois S, Cheptou PO, Petit C, Meerts P, Poncelet M, Vekemans X, Lefèbvre C, Escarré J (2003) Genetic structure and mating systems of metalliferous and nonmetalliferous populations of Thlaspi caerulescens. New Phytol 157:633–641

    Article  Google Scholar 

  • Ducousso A, Petit D, Valero M, Vernet P (1990) Genetic variations between and within populations of perennial grass: Arrhenatherum elatius. Hereditas 65:179–188

    Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoextraction. New Phytol 145:429–437

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro M (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fox GA (1995) Tinkering with the tinkerer: pollution versus evolution. Environ Health Perspect 103:93–100

    Article  PubMed  Google Scholar 

  • Fu SX, Fu SJ (1984) Flora of China (in Chinese). Science Public, Beijing, China, pp 34–148

  • He B, Yang XE, Ni WZ, Wei YZ, Ye HB (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Bot Sin 44:1365–1370

    CAS  Google Scholar 

  • Jiménez-Ambriz G, Petit C, Bourrié I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215

    Article  PubMed  CAS  Google Scholar 

  • Kleijn D, van Groenendael JM (1999) The exploitation of heterogeneity by a clonal plant in habitats with contrasting productivity levels. J Ecol 87:873–884

    Article  Google Scholar 

  • Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 285–300

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Daly MJ, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Long XX (2002) Mechanisms of zinc tolerance and hyperaccumulation by Sedum alfredii Hance. Ph.D. thesis, Zhejiang University, China

  • Macnair MR (1987) Heavy metal tolerance in plants: a model evolutionary system. Trends Ecol Evol 2:354

    Article  Google Scholar 

  • Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155:59–66

    Article  CAS  Google Scholar 

  • McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J Sci Food Agric 36:794–798

    Article  CAS  Google Scholar 

  • Mengoni A, Gonnelli C, Galardi F, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Barabesi C, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2001) Genetic diversity of heavy metal-tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Mol Ecol 10:1909–1916

    Article  PubMed  CAS  Google Scholar 

  • Nadig SG, Lee KL, Adams SM (1998) Evaluating alterations of genetic diversity in sunfish populations exposed to contaminants using RAPD assay. Aquat Toxicol 43:163–178

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I (2005) Multiple origin of metallicolous populations of the seudometallophyte Arabidopsis halleri (Brassicaceae) in Central Europe: the cpDNA testimony. Mol Ecol 14:4403–4414

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc. Numerical taxonomy and multivariate analysis system, Version 2.10e. Exeter Software, New York

  • Ross K, Cooper N, Bidwell JR, Elder J (2002) Genetic diversity and metal tolerance of two marine species: a comparison between populations from contaminated and reference sites. Mar Pollut Bull 44:671–679

    Article  PubMed  CAS  Google Scholar 

  • Rossens N, Verbruggen N, Meerts P, Ximėnez-Embún P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell Environ 26:1657–1672

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland

    Google Scholar 

  • Shu WS, Ye ZH, Zhang ZQ, Lan CY, Wong MH (2005) Natural colonization of plants on five lead/zinc mine tailings in southern China. Restor Ecol 13:49–60

    Article  Google Scholar 

  • Staton JL, Schizas NV, Chandler GT, Coull BC, Quattro JM (2001) Ecotoxicology and population genetics, the emergence of phylogeographic and evolutionary ecotoxicology. Ecotoxicology 10:217–222

    Article  PubMed  CAS  Google Scholar 

  • Taylor SI, Macnair MR (2006) Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). New Phytol 169:505–514

    Article  PubMed  CAS  Google Scholar 

  • Theodorakis CW, Lee KL, Adams SM, Law CB (2006) Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a pulp-mill-contaminated river. Environ Sci Technol 40:377–386

    Article  PubMed  CAS  Google Scholar 

  • Vekemans X, Lefèbvre C (1997) On the evolution of heavy-metal tolerant populations in Armeria maritime: evidence from allozyme variation and reproduction barriers. J Evol Biol 10:175–191

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wu L (1990) Colonization and establishment of plants in contaminated environments. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 269–284

    Google Scholar 

  • Wu L, Bradshaw AD, Thurman DA (1975) The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostic stolonifera. Hereditas 34:165–187

    Google Scholar 

  • Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii Hance: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Ye ZH (1995) Heavy metal tolerance, uptake and accumulation in populations of Typha latifolia L. and Phragmites australis (Car.) Trin. ex. Strudel. Ph.D. thesis, University of Sheffield, UK

Download references

Acknowledgements

We gratefully thank Professor S.H. Shi (Sun Yat-sen University) and Dr. X.D. Li (The Hong Kong Polytechnic University) for critical reading of this manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 40471117 and 30400053), the Science and Technology Key Project of Educational Ministry of China (Grant No. 031280), and the Fok Ying Tung Education Foundation (Grant No. 94022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Shu.

Additional information

Responsible Editor: Fangjie J. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Liao, B., Ye, M. et al. The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297, 83–92 (2007). https://doi.org/10.1007/s11104-007-9322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9322-5

Keywords

Navigation