Skip to main content

Advertisement

Log in

Recovery of hydrogen and removal of nitrate from water by electrocoagulation process

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm2 was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m3. The results also showed that the maximum removal efficiency of 95.9 % was achieved at a current density of 0.25 A/dm2, at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO 3 preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54 % of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abirami D, Vasudevan S, Florence E (2011) Nitrate reduction in water: influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst. J Hazard Mater 185:1412–1417

    Article  Google Scholar 

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39:95–171

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Dash BP, Chaudhari S (2005) Electrochemical denitrificaton of simulated ground water. Water Res 39:4065–4072

    Article  CAS  Google Scholar 

  • de Vooys ACA, van Santen RA, van Veen JAR (2000) Electrocatalytic reduction of NO 3 on palladium/copper electrodes. J Mol Catal A Chem 154:203–215

    Article  Google Scholar 

  • Devkota LM, William DS, Matta JH, Albertson OE, Grasso D, Fox P (2000) Variation of oxidation-reduction potential along the breakpoint curves in low-ammonia effluents. Water Environ Res 72:610–617

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachcheti N (2007a) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72:976–983

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Neeta B (2007b) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar P (1999) Cadmium(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal Chim Acta 389:205–212

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Equilibrium and kinetic modeling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008c) Biosorption of lead from aqueous solutions by green algae Spirogyra species: equilibrium and adsorption kinetics. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008d) Biosorption of lead from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids Surf B 64:170–178

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2010a) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2010b) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342:533–539

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 42:6619–6624

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas A (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997a) Process development for the removal of zinc and cadmium from wastewater using slag—a blast furnace waste material. Sep Sci Technol 32:2883–2912

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (1997b) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93

    Article  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1998) Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Sep Sci Technol 33:1331–1343

    Article  CAS  Google Scholar 

  • Gupta SK, Gupta AB, Gupta RC, Seth AK, Bassain JK, Gupta A (2000a) Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environ Health Perspect 108:363–365

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000b) Design parameters for the treatment of phenolic waste by carbon columns (obtained from fertilizer waste material). Water Res 34:1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Res 35:1125–1134

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Agarwal S (2002a) Pb(II) selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Electroanalysis 14:1127–1132

    Article  CAS  Google Scholar 

  • Gupta VK, Chandra S, Mangla R (2002b) Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim Acta 47:1579–1586

    Article  CAS  Google Scholar 

  • Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003a) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Mohan SD (2003b) Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. J Colloid Interface Sci 265:257–264

    Article  CAS  Google Scholar 

  • Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg(II), Pb(II) and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin. J Colloid Interface Sci 275:398–402

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Jain R, Mathur M, Sikarwar S (2006b) Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husk. J Colloid Interface Sci 303:80–86

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Maheshwari G, Lang H (2006c) Copper(II)-selective potentiometric sensor based on porphyrins in PVC matrix. Sens Actuat B117:99–106

    CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006d) Adsorption of a hazardous dye—erythrosine over hen feathers. J Colloid Interface Sci 304:52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Kumar P (2006e) PVC-based membranes of N, N′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens Actuat B 120:259–265

    Article  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007b) Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312:292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Shalini S (2007d) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007e) Removal of Reactofix golden yellow 3RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007f) Adsorption studies on the removal of Vertigo Blue49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2008) Adsorption of basic fuchsin using waste materials—bottom ash and de-oiled soya as adsorbents. J Colloid Interface Sci 319:30–39

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas A (2009a) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009b) Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta 647:66–71

    Article  CAS  Google Scholar 

  • Gupta VK, Al Khayat M, Singh AK, Pal MK (2009c) Nano level detection of Cd (II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634:36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009d) Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv., DOI:10.1039/C2RA20340E

  • Jain CK, Ali I (2000) Adsorption of cadmium on riverine sediment: quantitative treatment of the large particles. J Hydrol Process 14:261–270

    Article  Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995a) Copper(II)-selective electrodes based on macrocyclic compounds. Anal Proc incl Anal Commun (RSC) 32:99–101

    Article  Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995b) Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal Proc incl Anal Commun (RSC) 32:263–265

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Khurana U, Singh LP (1997a) A new membrane sensor for UO2+, based on 2-hydroxyacetophenoneoxime-thioureatrioxane resin. Electroanalysis 9:857–860

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997b) Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 122:583–586

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Srivastava P, Raisoni JR (2005) Anion recognition through novel C-thiophenecalix[4]resorcinarene: PVC based sensor for chromate ions. Talanta 65:716–721

    Article  CAS  Google Scholar 

  • Janssen LJJ, Pieterse MMJ, Barendrecht E (1977) Reduction of nitric oxide at a platinum cathode in an acidic solution. Electrochim Acta 22:27–33

    Article  CAS  Google Scholar 

  • Katsounaros I, Ipsakis D, Polatides C, Kyriacou G (2006) Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim Acta 52:1329–1338

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surface of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lee JK, Lee KR, Hong SH, Kim KH, Lee BH, Lim JH (2002) Residual chlorine distribution and disinfection during electrochemical removal of dilute ammonia from an aqueous solution. J Chem Eng Jpn 25:285–293

    Article  CAS  Google Scholar 

  • Li M, Feng C, Zhang Z, Sugiura N (2009a) Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim Acta 54:4600–4606

    Article  CAS  Google Scholar 

  • Li M, Feng C, Zhang Z, Lei X, Chen R, Yang Y, Sugiura N (2009b) Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method. J Hazard Mater 171:724–730

    Article  CAS  Google Scholar 

  • Lyubchik IS, Lyubchik AI, Galushko OL, Tikhonova LP, Vital J, Fonseca IM, Lyubchik SB (2004) Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf A 242:151–158

    Article  CAS  Google Scholar 

  • Mácová A, Bouzek K (2005) Electrocatalytic activity of copper alloys for NO 3 reduction in a weakly alkaline solution part 1: copper–zinc. J Appl Electrochem 35:1203–1211

    Article  Google Scholar 

  • Mateju V, Cizinska S, Krejci J, Tomas J (1992) Biological water denitrification—a review. Enzyme Microb Technol 14:170–183

    Article  CAS  Google Scholar 

  • Namasivayam C, Prathap K (2005) Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water. J Hazard Mater 123B:127–134

    Article  Google Scholar 

  • Namasivayam C, Senthil Kumar S (1998) Removal of arsenic(V) from aqueous solutions using industrial solid waste: adsorption rates and equilibrium studies. Ind Eng Chem Res 37:4816–4822

    Article  CAS  Google Scholar 

  • Orlando US, Baes AU, Nishijima W, Okada M (2002) Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 48:1041–1046

    Article  CAS  Google Scholar 

  • Petri OA, Safonova TY (1992) Electroreduction of nitrate and nitrite anions on platinum metals: a model process for elucidating the nature of the passivation by hydrogen adsorption. J Electroanal Chem 331:897–912

    Article  Google Scholar 

  • Polatides C, Dortsiou M, Kyriacou G (2005) Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim Acta 50:5237–5241

    Article  CAS  Google Scholar 

  • Primo O, Rivero MJ, Urtiaga AM, Ortiz I (2009) Nitrate removal from electrooxidized landfill leachate by ion exchange. J Hazard Mater 164:389–393

    Article  CAS  Google Scholar 

  • Squillace PJ, Scott CJ, Moran MJ, Nolan BT, Kolpin DW (2002) VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States. Environ Sci Technol 36:1922–1930

    Article  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC-Crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun 32:21–23

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1996) A PVC-based benzo-15-crown-5 membrane sensor for cadmium. Electroanalysis 8:938–940

    Article  CAS  Google Scholar 

  • Tada K, Shimazu K (2005) Kinetic studies of reduction of nitrate ions at Sn-modified Pt electrodes using a quartz crystal microbalance. J Electroanal Chem 577:303–307

    Article  CAS  Google Scholar 

  • Terry PA (2009) Removal of nitrates and phosphates by ion exchange with hydrotalcite. Environ Eng Sci 26:691–696

    Article  CAS  Google Scholar 

  • Uber FH (1985) Uber die adsorption in lösungen. Z Phys Chem 57:387–407

    Google Scholar 

  • Vasudevan S, Lakshmi J (2011a) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. Sep Purif Technol 80:643–651

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2011b) Studies relating to an electrochemically assisted coagulation for the removal of chromium from water using zinc anode. Water Sci Technol: Water Supply 11:142–150

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012) Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water. Water Sci Technol 65:353–360

    Article  CAS  Google Scholar 

  • Vasudevan S, lakshmi, J (2012a) The adsorption of phosphate by graphene from aqueous solution. RSC Adv., DOI:10.1039/C2RA20270K

  • Vasudevan S, Sozhan G, Ravichandran S, Jayaraj J, Lakshmi J, Margrat Sheela S (2008) Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind Eng Chem Res 47:2018–2023

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2009a) Studies on the removal of iron from drinking water by electrocoagulation—a clean process. Clean 37:45–51

    CAS  Google Scholar 

  • Vasudevan S, Jayaraj J, Lakshmi J, Sozhan G (2009b) Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies. Korean J Chem Eng 26:1058–1063

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Packiyam M (2010a) Electrocoagulation studies on removal of cadmium using magnesium electrode. J Appl Electrochem 40:2023–2032

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Vanathi R (2010b) Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherm and sludge characterization. Clean 38:9–16

    CAS  Google Scholar 

  • Vasudevan S, Margrat Sheel S, Lakshmi J, Sozhan G (2010c) Optimization of the process parameters for the removal of boron from drinking water by electrocoagulation—a clean technology. J Chem Technol Biotechnol 85:926–933

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010d) Studies relating to removal of arsenate by electrochemical coagulation optimization, kinetics, coagulant characterization. Sep Sci Technol 45:1313–1325

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010e) Studies on the removal of arsenate by electrochemical coagulation using aluminum alloy anode. Clean 38:506–515

    CAS  Google Scholar 

  • Vasudevan S, Suresh Kannan B, Lakshmi J, Mohanraj S, Sozhan G (2011a) Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J Chem Technol Biotechnol 86:428–436

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2011b) Studies on the Al–Zn–In—alloy as anode material for the removal of chromium from drinking water in electrolcoagulation process. Desalination 275:260–268

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2011c) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. J Hazard Mater 192:26–34

    CAS  Google Scholar 

  • Vepsäläinen M, Kivisaari H, Pulliainen M, Oikari A, Sillanp M (2011) Removal of toxic pollutants from pulp mill effluents by electrocoagulation. Sep Purif Technol 81:141–150

    Article  Google Scholar 

  • WHO (World Health Organization) (2004) Guidelines for drinking water quality, 3rd edn. WHO, Geneva

    Google Scholar 

  • Yang H, Cheng H (2007) Controlling nitrite level in drinking water by chlorination and chloramination. Sep Purif Technol 56:392–396

    Article  CAS  Google Scholar 

  • Yavuz Y, Ocal E, Koparal AS, Ogutverena UB (2011) Treatment of dairy industry wastewater by EC and EF processes using hybrid Fe–Al plate electrodes. J Chem Technol Biotechnol 86:964–969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this research (3800-W1) from Indo-French Centre for the Promotion of Advanced Research (IFCPAR), New Delhi, India is gratefully acknowledged. The authors are also grateful to the director of Central Electrochemical Research Institute, Karaikudi, for publishing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyan Vasudevan.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmi, J., Sozhan, G. & Vasudevan, S. Recovery of hydrogen and removal of nitrate from water by electrocoagulation process. Environ Sci Pollut Res 20, 2184–2192 (2013). https://doi.org/10.1007/s11356-012-1028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1028-4

Keywords

Navigation