Skip to main content

Potentially Harmful Elements in Forest Soils

A Pedological Viewpoint

  • Chapter
  • First Online:
PHEs, Environment and Human Health

Abstract

Forest ecosystems differ from agroecosystems, in the first place by the established vegetation cover of deciduous or needle trees, associated with a specific biochemical cycling of forest organic matter. The presence of a forest floor (litter O and humus-rich A horizons) introduces additional pathways of biogeochemical cycling of potential harmful major and trace elements (PHTE), with respect to soils under agricultural land use. Moreover, unlike agroecosystems, forest soils are predominantly affected by only one way of PHTEs inputs, deriving from atmospheric deposition. Aged and established forests are generally in a state of equilibrium with respect to elemental cycling. In such forest soils, especially in their deep horizons which are most often little affected by any contamination, PHTE contents are fairly close to the initial natural pedo-geochemical background concentrations. Consequently, they can be used as a reference for other soils developed in the same parent material, but under agricultural land use and affected by anthropogenic contaminations. Exceptions are forest soils located in the proximity of industrial or mining areas, which are more exposed to short-range industrial atmospheric fallout.

Forest soils often have a lower buffering capacity against acidification than agricultural soils due to the adding of acid-neutralizing amendments (fertilization, liming, and compost) to the latter. In strongly acid forest soils, the risks of mobility of PHTEs are well-established and migration may occur in soluble, pseudo-soluble or particulate forms. Soil acidity may lead to high levels of Al and Mn, representing additional risks of aluminium or manganese toxicity. The forest floor represents a particular metal trapping medium in soils. When a mor-type humus layer is present at the surface of forest soils, exogenous pollutants accumulate, as a first step, in a fully organic surface horizon. But the fate of contaminants in terms of permanent retention, or subsequent partial or even full release, and times of retention are items that are still under debate. In the particular case of podzols with strongly acidified soil conditions, PHTEs are susceptible to migrate to depth and to a part intercepted (long-term, permanently?) in the B horizons whereas another part may leach out of the soils and possibly transferred to the groundwater.

For a good understanding and a relevant interpretation of PTHE concentrations through the soil profile, in terms of accumulation or impoverishment, the limits of the morphological horizons must be respected during sampling. Such horizons may be of small thickness (for instance Bh horizons in podzols), but they can demonstrate substantially contrasted concentrations, for instance in the case of strongly differentiated soils (cf Table 4.3). Taking into consideration the characteristic processes involved in the formation of soil horizons, is essential for a better insight into mechanisms and pathways of cycling of PTHEs. Hence, for a valid assessment of the presence, distribution and fate of PTHEs in forest soils, and in order to allow an appropriate comparison with anthropogenic contaminated agricultural soils, it is crucial to take account of different soil parameters, such as the nature of the parent material, pedological characteristics and specific physico-chemical conditions. Moreover, and surely, it is essential to adopt a soil sampling strategy that is adapted to the aims and/or different parts of multidisciplinary study programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Spodosols according to the USDA Soil Taxonomy.

References

  • Adriano DC (2001) Trace elements in terrestrial environments. Springer, New York

    Google Scholar 

  • Adriano DC, Chlopecka A, Kaplan DI, Clijsters H, Vangronsveld J (1997) Soil contamination and remediation: philosophy, science and technology. In: Proceedings of international conference on biogeochemistry trace elements, Paris, 1995. INRA, Paris

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, Glasgow

    Google Scholar 

  • Alloway BJ, Zhang P, Mott CJB, Nicholson F, Chambers B, Smith S, Carlton-Smith C (1999) Atmospheric deposition of heavy metals onto agricultural land in England and Wales. In: Proceedings of international conference on biogeochemistry trace elements, Wien, pp 414–415

    Google Scholar 

  • Anand RR, Gilkes RJ (1987) Iron oxides in lateritic soils from Western Australia. J Soil Sci 38:607–622

    CAS  Google Scholar 

  • Andersen MK, Raulund-Rasmussen K, Hansen HCB, Strobel W (2002) Distribution and fractionation of heavy metals in pairs of arable and afforested soils in Denmark. Eur J Soil Sci 53:491–502

    CAS  Google Scholar 

  • Azimi S, Ludwig A, Thévenot DR, Colin JL (2003) Trace metal determination in total atmospheric deposition in rural and urban areas. Sci Total Environ 308:247–254

    CAS  Google Scholar 

  • Bacon JR, Hewitt IR (2005) Heavy metals deposited from the atmosphere on upland Scottish soils: chemical and lead isotope studies on the association of metal with soil components. Geochim Cosmochim Acta 60:19–33

    Google Scholar 

  • Bacon JR, Berrow ML, Shand CA (1992) Isotopic composition as an indicator of origin of lead accumulations in surface soils. Int J Environ Anal Chem 46:71–76

    CAS  Google Scholar 

  • Baize D (1997a) Bilan isoquartz des éléments traces métalliques sur deux planosols. In: Proceedings of international conference on biogeochemistry trace elements, Paris, 1995

    Google Scholar 

  • Baize D (1997b) Teneurs totales en eléments traces métalliques dans les sols (France). Références et stratégies d’interprétation. INRA Éditions, Paris

    Google Scholar 

  • Baize D (2012) Les “terres d’Aubues” de Basse Bourgogne: nouvelle synthèse et bilan de matières à très long terme. Ét Gest Sols 19:139–161

    Google Scholar 

  • Baize D, Bourgeois S (2005) Estimation des apports agricoles et des retombées atmosphériques en éléments en traces et majeurs grâce à un essai de longue durée (dispositif Dehérain à Grignon). Ét Gest Sols 12:9–23

    Google Scholar 

  • Baize D, Chrétien J (1994) Les couvertures pédologiques de la plate-forme sinémurienne en Bourgogne. Particularités morphologiques et pédo-géochimiques. Ét Gest Sols 1:7–27

    Google Scholar 

  • Baize D, Sterckeman T (2001) Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264:127–139

    CAS  Google Scholar 

  • Balabane M, van Oort F (2002) Abundance and metal enrichment of coarse particulate organic matter in cultivated soils low metal-contaminated from past smelter emissions. Soil Biol Biochem 34:1513–1516

    CAS  Google Scholar 

  • Balabane M, Faivre D, van Oort F, Dahmani-Muller H (1999) Mutual effects of organic matter dynamics and heavy metal fate in a metallophyte grassland. Environ Pollut 105:45–54

    CAS  Google Scholar 

  • Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. C R Acad Sci Paris Série 2(321):585–592

    Google Scholar 

  • Benbrahim M, Denaix L, Balet J, Thomas AL, Carnus JM (2006) Evolution of metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut 144:847–854

    CAS  Google Scholar 

  • Berg T, Fjeld E, Steinnes E (2006) Atmospheric mercury in Norway: contributions from different sources. Sci Total Environ 368:3–9

    CAS  Google Scholar 

  • Bergkvist B, Folkeson L, Berggren D (1989) Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. A literature review. Water Air Soil Pollut 47:217–286

    CAS  Google Scholar 

  • Berthelsen BO, Steinnes E (1995) Accumulation patterns of heavy metals in soil profiles as affected by forest clear-cutting. Geoderma 66:1–14

    CAS  Google Scholar 

  • Binkley D, Fisher R (2012) Ecology and management of forest soils. Wiley, New York

    Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletion in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils. Sci Total Environ 249:257–280

    CAS  Google Scholar 

  • Blum WEH, Brandstetter A, Wenzel WW (1997) Trace element distribution in soil as affected by land use. In: Adriano DC, Chen ZS, Yang SS, Iskandar IK (eds) Biogeochemistry of trace metals. Advances in environmental science. Science Reviews, Northwood, pp 61–73

    Google Scholar 

  • Bonneau M (1995) Fertilisation des forêts dans les pays tempérés. ENGREF, Nancy

    Google Scholar 

  • Bourennane H, Douay F, Sterckeman T, Villanneau E, Ciesielski H, King D, Baize D (2010) Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 157:165–174

    CAS  Google Scholar 

  • Bourg AMC, Védy JC (1986) Expected speciation of dissolved trace metals in gravitational water of acid soil profiles. Geoderma 38:279–292

    CAS  Google Scholar 

  • Boutron CF (1995) Historical reconstruction of the earth’s past atmospheric environment from Greenland and Antarctic snow and ice cores. Environ Rev 3:1–28

    CAS  Google Scholar 

  • Brännvall ML, Bindler R, Emteryd O, Renberg I (2001) Vertical distribution of atmospheric pollution lead in Swedish boreal forest soils. Water Air Soil Pollut Focus 1:357–370

    Google Scholar 

  • Bringmark L, Bringmark E (2001) Soil respiration to small-scale patterns of lead and mercury in mor layers of Southern Swedish forest sites. Water Air Soil Pollut Focus 1:395–408

    CAS  Google Scholar 

  • Brinkman R (1979) Ferrolysis, a soil-forming process in hydromorphic conditions. Ph.D. thesis, Wageningen publications No. 699. Pudoc, Wageningen

    Google Scholar 

  • Bruckert S, Cachau-Herreillat F, Capdecomme H, Guillet B (1979) Intervention du cycle biogéochimique dans la genèse des concentrations anomaliques du plomb. Exemple de la vallée du Rahin (Haute Saône, France). Bull Cent Rech Expl Prod Elf-Aquitaine 3:281–297

    CAS  Google Scholar 

  • Buatier C, Wiart J (1997) Caractérisation et analyse de la mobilité et de la biodisponibilité du nickel dans les sols agricoles. Le cas du Pays de Gex, Ain, France. In: Proceedings of international conference on biogeochemistry trace elements. Paris, 1995. INRA, Paris

    Google Scholar 

  • Camizulli E, Monna F, Bermond A, Manoucheri N, Besançon S, Losno R, van Oort F, Labanowski J, Perreira A, Chateau C, Alibert P (2013) Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios. Sci Total Environ 472:425–436

    Google Scholar 

  • Candelone JP, Hong S (1995) Post-industrial revolution changes in large-scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. J Geophys Res 100:16.605–16.616

    Google Scholar 

  • Charlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118:143–167

    CAS  Google Scholar 

  • Chlopecka A, Hutchinson T (1997) Extractable fractions of heavy metals in forest soil pedons, Ontario, Canada. In: Proceedings international conference on the biogeochemistry trace elements, Paris, 1995

    Google Scholar 

  • Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. Adv Soil Sci 20:2–90

    Google Scholar 

  • Citeau L, Lamy I, van Oort F, Elsass F (2003) Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf A, Physicochem Eng Aspects 217:11–19

    CAS  Google Scholar 

  • Citeau L, Gaboriaud F, Elsass F, Thomas F, Lamy I (2006) Investigations of physico-chemical features of soil colloidal suspensions. Colloids Surf A, Physicochem Eng Aspects 287:94–105

    CAS  Google Scholar 

  • Citeau L, Lamy I, van Oort F (2009) Suivi in situ de la composition des eaux gravitaires de sols sableux contaminés: déterminisme de la mobilité de Zn et Pb. In: Cambier P, Schvartz C, van Oort F (eds) Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains. Éditions Quæ, Versailles, pp 45–66

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40:2525–2530

    CAS  Google Scholar 

  • Craig BW, Friedland AJ, Herrick GT, Siccama TG (1991) Changes between 1981 and 1990 in lead, copper and zinc in organic horizon profiles from New England, USA. In: International conference on heavy metals environment, Edinburgh, vol 1, pp 302–305

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    CAS  Google Scholar 

  • Dambrine E, Dupouey JL, Laüt L, Humbert L, Thinon M, Beaufils T, Richard H (2007) Biodiversity patterns in present French forests related to former Roman agriculture. Ecology 88:1430–1439

    CAS  Google Scholar 

  • Degryse F, Vlassak V, Seuntjes P, Smolders E (2001) Cadmium mobility in sandy soils. In: Proceedings of international conference biochemistry trace elements, Guelph, p 181

    Google Scholar 

  • Delas J (1966) Étude des rapports entre cuivre et matière organique dans un podzol humo-ferrugineux accidentellement enrichi en cuivre. C R Acad Sci Paris, Série D 262:2688–2691

    CAS  Google Scholar 

  • Denaeyer-De Smet S (1974) Cycle biologique annuel et distribution du plomb dans une pessière et une hêtraie établies sur même roche-mère. Bull Soc Roy Bot Belg 107:115–125

    CAS  Google Scholar 

  • Doelsch E, Van de Kerchove V, Saint MH (2006) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134:119–134

    CAS  Google Scholar 

  • Driessen PM, Dudal R (eds) (1991) The major soils of the world. Lecture notes on their geography, formation, properties and use. Agriculture University/Kath University, Wageningen/Leuven

    Google Scholar 

  • Dubois JP, Benitez N, Liebig T, Baudraz M, Okopnik F (2002) Le cadmium dans les sols du haut Jura Suisse. In: Baize D, Tercé M (eds) Les Éléments traces métalliques dans les sols – Approches fonctionnelles et spatiales. INRA Éditions, Paris, pp 33–52

    Google Scholar 

  • Ducaroir J, Lamy I (1995) Evidence of trace metal association with soil organic matter using particle size fractionation after physical dispersion treatment. Analyst 120:741–745

    CAS  Google Scholar 

  • Duchaufour P (1982) Pedology. Pedogenesis and classification. George Allen & Unwin, London

    Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Google Scholar 

  • Emmanuel S, Erel Y (2002) Implications from concentrations and isotopic data for Pb partitioning processes in soils. Geochim Cosmochim Acta 66:2517–2527

    CAS  Google Scholar 

  • Erel Y, Veron A, Halicz L (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim Cosmochim Acta 61:4495–4505

    CAS  Google Scholar 

  • Fernandez C, Labanowski J, Cambier P, Jongmans T, van Oort F (2007) Fate of airborne pollution in soils as related to agricultural management: 1. Distributions of Zn and Pb in soil profiles. Eur J Soil Sci 58:547–559

    CAS  Google Scholar 

  • Fernandez C, Monna F, Labanowski J, Loubet M, van Oort F (2008) Anthropogenic lead distribution in soils under arable land and permanent grassland estimated by Pb-isotopic compositions. Environ Pollut 156:1083–1091

    CAS  Google Scholar 

  • Fernandez C, Labanowski J, Jongmans T, Bermond A, Cambier P, Lamy I, van Oort F (2010) Fate of airborne metal pollution in soils as related to agricultural management. 2. Assessing the role of biological activity on micro-scale Zn and Pb distributions in A, B and C horizons. Eur J Soil Sci 61:514–524

    CAS  Google Scholar 

  • Filipe D (1999) Étude de la localisation et essai de spéciation des métaux Pb, Zn, Cu, Cd dans un sol podzolique sous forêt acide. Mém DAA-ENSA, Rennes

    Google Scholar 

  • Galloway JN, Thornton JD, Norton SA, Volchok HL, McLean RAN (1982) Trace metals in atmospheric deposition: a review and assessment. Atmos Environ 16:1677–1700

    CAS  Google Scholar 

  • Gandois L, Tipping E, Dumat C, Probst A (2010) Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall. Atmos Environ 44:824–833

    CAS  Google Scholar 

  • Gasser UG, Juchler SJ, Hobson WA, Sticher H (1995) The fate of chromium and nickel in subalpine soils derived from serpentinite. Can J Soil Sci 75:187–195

    CAS  Google Scholar 

  • Godin PM, Feinberg MH, Ducauze CJ (1985) Modelling of soil contamination by airborne lead and cadmium around several emission sources. Environ Pollut 10:97–114

    CAS  Google Scholar 

  • Goulding KWT, Blake L (1998) Land use, liming and the mobilization of potentially toxic elements. Agric Ecosyst Environ 67:135–144

    CAS  Google Scholar 

  • Guillet B, Jeanroy E, Rougier C, Souchier B (1980) Le cycle biogéochimique et la dynamique du comportement des éléments-traces (Cu, Pb, Zn, Ni, Co, Cr) dans les pédogenèses organiques acides. L’exemple des sols brunifiés et podzoliques sur le granite des Ballons, Vosges méridionales. Note Techn 27. CPB-CNRS, Nancy

    Google Scholar 

  • Guillet B, Rouiller J, Védy JC (1981) Dispersion et migration de minéraux argileux dans les podzols. Contribution des composés organiques associés, leur rôle sur les formes et l’état de l’aluminium. In: Migrations organo-minérales dans les sols tempérés. Ed CNRS, Paris, pp 49–56

    Google Scholar 

  • Hanschmann G, Opp C (1993) Schwermetallgehalte in Wald-, Wiesen- und Ackerböden bei Bitterfeld (Sachsen-Anhalt). Mitteilgn Dtsch Bodenkundl Gesellsch 72:365–368

    Google Scholar 

  • Heinrichs H, Mayer R (1977) Distribution and cycling of major and trace elements in two central European forest ecosystems. J Environ Qual 6:402–407

    CAS  Google Scholar 

  • Heinrichs H, Mayer R (1980) The role of forest vegetation in the biogeochemical cycle of heavy metals. J Environ Qual 9:111–118

    CAS  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    CAS  Google Scholar 

  • Hesterberg D (1998) Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils. Agric Ecosyst Environ 67:121–133

    CAS  Google Scholar 

  • Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millenia ago by Greek and Roman civilizations. Sci 265:1841–1843

    CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources. World soil resources reports No. 103. FAO, Rome

    Google Scholar 

  • Jensen A (1997) Historical deposition rates of Cd, Cu, Pb, and Zn in Norway and Sweden estimated by 210Pb dating and measurement of trace elements in cores of peat bogs. Water Air Soil Pollut 95:205–220

    CAS  Google Scholar 

  • Jensen NP, Svensmark B (1989) Distribution and concentration of Pb and Cd in two adjacent luvisols under grassland and forest in Denmark. Zeitschr Pflantz Bodenk 152:121–124

    CAS  Google Scholar 

  • Johnson CE, Petras RJ (1998) Distribution of zinc and lead fractions within a forest spodosol. Soil Sci Soc Am J 62:782–789

    CAS  Google Scholar 

  • Jongmans AG, Denaix L, van Oort F (1998) Isotropic smectite coatings and spheroids in holocene volcanic deposits under temperate climate, France. Soil Sci Soc Am J 62:287–295

    CAS  Google Scholar 

  • Juillot F, Maréchal C, Morin G, Jouvin D, Cacaly S, Telouk P, Benedetti MF, Ildefonse P, Sutton S, Guyot F, Brown GE (2011) Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France. Geochim Cosmochim Acta 75:2295–2308

    CAS  Google Scholar 

  • Juste C (1966) Contribution à l’étude de la dynamique de l’aluminium dans les sols acides du Sud-Ouest atlantique. Application à leur mise en valeur. Ann Agron 17:251–341

    Google Scholar 

  • Juste C, Tauzin J (1986) Évolution du contenu en métaux lourds d’un sol de limon maintenu en jachère nue après 56 années d’application continue de divers engrais et amendements. C R Acad Agr France 72:739–746

    CAS  Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    CAS  Google Scholar 

  • Kaste JM, Friedland AJ, Sturup S (2003) Using stable and radioactive isotopes to trace atmospherically deposited Pb in montane forest soils. Environ Sci Technol 37:3560–3567

    CAS  Google Scholar 

  • Keller C, Domergue FL (1996) Soluble and particulate transfers of Cu, Cd, Al, Fe and some major elements in gravitational waters of a Podzol. Geoderma 71:263–274

    CAS  Google Scholar 

  • Keller C, Védy JC (1994) Heavy metals in the environment. Distribution of Cu and Cd fractions in two forest soils. J Environ Qual 23:987–999

    CAS  Google Scholar 

  • Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–193

    CAS  Google Scholar 

  • Krosshavn M, Steinnes E, Varskog P (1993) Binding of Cd, Cu, Pb and Zn in soil organic matter with different vegetational background. Water Air Soil Pollut 71:185–193

    CAS  Google Scholar 

  • Labanowski J, Sebastia J, Foy E, Jongmans AG, Lamy I, van Oort F (2007) Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout. Environ Pollut 149:59–69

    CAS  Google Scholar 

  • Lamy I, van Oort F, Dère C, Baize D (2006) Use of major- and trace-element correlations to assess metal migration in sandy Luvisols irrigated with wastewater. Eur J Soil Sci 57:731–740

    CAS  Google Scholar 

  • Lang Burak D, van Oort F, Becquer T, Foy E, Fontes MP (2013) Unravelling zinc and lead distributions in dolomitic and metapelitic soils of the Brazilian Central Plateau: insight from physical fractionation, optical microscopy and X-ray micro-fluorescence. Eur J Soil Sci 64:131–144

    CAS  Google Scholar 

  • Latrille C, Elsass F, van Oort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100:127–146

    CAS  Google Scholar 

  • Lévêque J, Philippe S, Baize D, Monna F, Andreux F, Haack U (2002) Pollutions par le plomb – Utilisation des isotopes stables pour la détermination de l’origine (géogène ou industrielle) du plomb. In: Baize D, Tercé M (eds) Les Éléments traces métalliques dans les sols – Approches fonctionnelles et spatiales. INRA Éditions, Paris, pp 375–391

    Google Scholar 

  • Mallmann FJK, Rheinheimer dos Santos D, Cambier P, Labanowski J, Lamy I, Santanna MJ, Tessier D, van Oort F (2012) Using a 2 site-reactive model for simulating one century changes of Zn and Pb concentration profiles in soils affected by metallurgical fallout. Environ Pollut 162:294–302

    Google Scholar 

  • McBride MB (1989) Reactions controlling metal heavy solubility in soils. Adv Soil Sci 10:1–55

    CAS  Google Scholar 

  • McBride MB, Sauvé S, Hendershot W (1997) Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur J Soil Sci 48:337–346

    CAS  Google Scholar 

  • McKeague JA, Wolynetz MS (1980) Background levels of minor elements in some Canadian soils. Geoderma 24:299–307

    CAS  Google Scholar 

  • Mench M, Baize D, Mocquot B (1997) Cadmium availability to wheat in five soil series from the Yonne district, Burgundy, France. Environ Pollut 95:93–103

    CAS  Google Scholar 

  • Michelot D, Sioboud E, Dore JC, Viel C, Poirier F (1998) Update on metal content profiles in mushrooms. Toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012

    CAS  Google Scholar 

  • Miller EK, Friedland AJ (1994) Lead migration in forest soils: response to changing atmospheric inputs. Environ Sci Technol 28:662–669

    CAS  Google Scholar 

  • Mol G, Spijker J, Klaver G (2009) The reactivity of trace element enrichments in the soil. In: Proceedings of international symposium mineral environmental health. Paris, 2009, pp 22–24

    Google Scholar 

  • Monna F, Hamer K, Lévêque J, Sauer M (2000) Pb isotopes as reliable marker of early mining and smelting in the Northern Harz province (Germany). J Geochem Explor 68:201–210

    CAS  Google Scholar 

  • Monna F, Petit C, Guillaumet JP, Jouffroy-Bapicot I, Blanchot C, Dominik J, Losno R, Richard H, Lévêque J, Château C (2004) History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat-bog (Morvan – France). Environ Sci Technol 38:657–673

    Google Scholar 

  • Nahmani J, Lavelle P, Lapied E, van Oort F (2003) Effects of heavy metal soil pollution on earthworm communities in the north of France. Pedobiologia 47:664–669

    Google Scholar 

  • Nalovic L, Quantin P (1972) Évolution géochimique de quelques éléments majeurs et traces dans un sol ferrallitique ferritique de Nouvelle-Calédonie issu de péridotites. Cah Orstom Pédol 10:389–410

    Google Scholar 

  • Navarre JL, Ronneau C, Priest P (1980) Deposition of heavy elements on Belgian agricultural soils. Water Air Soil Pollut 14:207–213

    CAS  Google Scholar 

  • Négrel P, Roy S (1998) Rainwater in the Massif Central (France); a global geochemical approach: major and trace elements, and isotopic (Sr, Pb) constraints. Annu VM Goldschmidt Conf 62A:1066–1067

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    CAS  Google Scholar 

  • Petersen L (1976) Podzols and podzolisation. DRS Forlag, Copenhagen

    Google Scholar 

  • Prudente D (1999) Distribution des teneurs en cadmium dans les sols de la forêt communale des Fourgs (Doubs, France). DÉS Université de Genève, EPF, Lausanne

    Google Scholar 

  • Prudente D, Baize D, Dubois JP (2002) Le cadmium naturel dans une forêt du haut Jura français. In: Baize D, Tercé M (eds) Les Éléments traces métalliques dans les sols- Approches fonctionnelles et spatiales. INRA Éditions, Paris, pp 53–70

    Google Scholar 

  • Quantin C, Becquer T, Berthelin J (2002) Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C R Geosci 334:273–278

    CAS  Google Scholar 

  • Ragsdale HL, Berish CW (1988) Trace metals in the atmosphere, forest floor, soil, and vegetation. Ecol Stud 66:367–380

    Google Scholar 

  • Rambeau C, Baize D, Saby N, Matera V, Adatte T, Föllmi KB (2010) High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Environ Earth Sci 61:1573–1585

    CAS  Google Scholar 

  • Rasmussen PE (1998) Long-range atmospheric transport of trace metals: the need for geoscience perspectives. Environ Geol 33:96–108

    CAS  Google Scholar 

  • Reimann C, Kashulina G, de Caritat P, Niskavaara H (2001) Multi-element, multi-medium regional geochemistry in the European Arctic: element concentration, variation and correlation. Appl Geochem 16:759–780

    CAS  Google Scholar 

  • Rheinheimer dos Santos D, Cambier P, Mallmann FJK, Labanowski J, Lamy I, Tessier D, van Oort F (2013) Prospective modelling with Hydrus-2D of 50 years Zn and Pb movement in metal-contaminated contaminated agricultural soils. J Contam Hydrol 145:54–66

    CAS  Google Scholar 

  • Römkens P, Salomons W (1998) Cd, Cu and Zn solubility in arable and forest soils: consequences of land use changes for metal mobility and risk assessment. Soil Sci 163:859–871

    Google Scholar 

  • Ruan XL, Zhang GL, Ni LJ, He Y (2008) Distribution and migration of heavy metals in undisturbed forest soils: a high resolution sampling method. Pedosphere 18:386–393

    CAS  Google Scholar 

  • Saur E, Juste C (1994) Enrichment of trace elements from long-range aerosol transport in sandy podzolic soils of southwest France. Water Air Soil Pollut 73:235–246

    CAS  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Google Scholar 

  • Schlesinger WH, Reiners WA (1974) Deposition of water and cations on artificial foliar collectors in fir krummholz of New England mountains. Ecology 55:378–386

    Google Scholar 

  • Semlali RM (2000) Localisation, dynamique et estimation de flux d’éléments traces métalliques dans les sols. Thesis. ENGREF, Paris

    Google Scholar 

  • Semlali RM, van Oort F, Loubet M, Denaix L (2000) La composition isotopique du plomb: un outil privilégié pour l’estimation de la distribution du plomb anthropique et naturel dans les sols. C R Acad Sci Paris 331:595–600

    CAS  Google Scholar 

  • Semlali RM, van Oort F, Denaix L, Loubet M (2001a) Estimating distributions of endogenous and exogenous Pb in soils by using Pb isotopic ratios. Environ Sci Technol 35:4180–4188

    CAS  Google Scholar 

  • Semlali RM, van Oort F, Denaix L, Loubet M (2001b) Accumulation and redistribution d’éléments traces métalliques dans des sols soumis à des retombées atmosphériques diffuses. Pol Atmos 172:545–556

    CAS  Google Scholar 

  • Semlali RM, Dessogne JB, Monna F, Bolte J, Azimi S, Navarro N, Denaix L, Loubet M, Château C, van Oort F (2004) Modeling lead input and output in soils using lead isotopic geochemistry. Environ Sci Technol 38:1513–1521

    CAS  Google Scholar 

  • Shotyk W, Blaser P (1999) Independent records of long-term atmospheric Pb deposition to Swiss forest soils using peat cores from ombotrophic bogs. In: Proceedings of international conference on biogeochemistry trace elements, Wien, pp 1076–1077

    Google Scholar 

  • Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, van der Knap WO (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura mountains, Switzerland. Science 281:1635–1640

    CAS  Google Scholar 

  • Shotyk W, Blaser P, Grunig A, Cheburkin AK (2000) A new approach for quantifying cumulative, anthropogenic atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bogs profiles. Sci Total Environ 249:281–295

    CAS  Google Scholar 

  • Shotyk W, Weiss D, Kramers JD, Frei R, Cherbukin AK, Gloor M, Reese S (2001) Geochemistry of the peat bog at Étang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12 370 14C yr BP. Geochem Cosmochim Acta 65:2337–2360

    CAS  Google Scholar 

  • Soubrand-Colin M, Néel C, Bril H, Grosbois C, Caner L (2007) Geochemical behaviour of Ni, Cr, Cu, Zn and Pb in an Andosol-Cambisol climosequence on basaltic rocks in the French Massif Central. Geoderma 137:340–351

    CAS  Google Scholar 

  • Sposito G, Coves J (1988) User’s guide of SOILCHEM, a computer program for the calculation of chemical speciation in soils. University of California, Riverside/Berkeley

    Google Scholar 

  • Steinnes E (1997) Trace element profiles in ombrogenous peat cores from Norway: evidence of long range atmospheric transport. Water Air Soil Pollut 100:405–413

    CAS  Google Scholar 

  • Steinnes E, Friedland AJ (2005) Lead migration in podzolic soils from Scandinavia and the United States of America. Can J Soil Sci 85:291–294

    CAS  Google Scholar 

  • Steinnes E, Friedland AJ (2006) Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186

    CAS  Google Scholar 

  • Steinnes E, Solberg W, Petersen HM, Wren CD (1989) Heavy metal pollution by long range atmospheric transport in natural soils of Southern Norway. Water Air Soil Pollut 45:207–218

    CAS  Google Scholar 

  • Steinnes E, Allen RO, Petersen HM, Rambaek JP, Varskog P (1997) Evidence of large scale heavy-metal contamination of natural surface soils in Norway from long-range atmospheric transport. Sci Total Environ 205:255–266

    CAS  Google Scholar 

  • Steinnes E, Eidhammer T, Donisa C, Bränvall ML (2005) Quantification of pollutant lead in forest soils. Soil Sci Soc Am J 69:1399–1404

    CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut 107:377–389

    CAS  Google Scholar 

  • Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C, Carignan J (2006) Trace element distributions in soils developed in loess deposits from northern France. Eur J Soil Sci 57:392–410

    CAS  Google Scholar 

  • Strawn DG, Hickey PJ, McDaniel PA, Baker LL (2012) Distribution of As, Cd, Pb, and Zn in redox features of mine-waste impacted wetland soils. J Soils Sed 12:1100–1110

    CAS  Google Scholar 

  • Sucharovà J, Suchara I, Hola M, Marikova S, Reimann C, Boyd R, Filzmoser P, Englmaier P (2012) Top-/bottom-soil ratios and enrichment factors: what do they really show? Appl Geochem 27:138–145

    Google Scholar 

  • Sugden CL, Farmer JG, Mackenzie AB (1991) Lead and 206Pb/207Pb profiles in 210Pb-dated ombrotrophic peat cores from Scotland. In: International conference on heavy metals environment, Edinburgh, vol 1, pp 90–93

    Google Scholar 

  • Tessier A, Campbell PCG, Bisson L (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    CAS  Google Scholar 

  • Thiry M, van Oort F (1999) De l’échantillonnage à la spéciation: pertinence des analyses minéralogiques par diffraction des Rayons-X dans les sites et sols pollués par des métaux. In: Les cahiers des Clubs Crin: Spéciation des métaux dans les sols. Editions Ecrin, Paris, pp 96–107

    Google Scholar 

  • Thiry M, Huet-Taillanter S, Schmitt JM (2002) La friche industrielle de Mortagne-du-Nord (59) – I – Prospection du site, composition des scories, hydrochimie, hydrologie et estimation des flux. Bull Soc Géol France 173:369–381

    CAS  Google Scholar 

  • Trolard F, Bourrié G, Jeanroy E, Herbillon AJ, Martin H (1995) Trace metals in natural iron oxides from laterites. Geochim Cosmochim Acta 59:1285–1297

    CAS  Google Scholar 

  • Tyler G (1978) Leaching rate of heavy metal ions in forest soil. Water Air Soil Pollut 9:137–148

    CAS  Google Scholar 

  • Tyler G (1981) Leaching of metals from the A-horizon of a spruce forest soil. Water Air Soil Pollut 15:353–369

    CAS  Google Scholar 

  • Ugolini FC, Dahlgren R (1987) The mechanism of podzolization as revealed by soil solution studies. In: Righi D, Chauvel A (eds) Podzols et podzolisation. AFES – INRA, Paris, pp 195–203

    Google Scholar 

  • Ugolini FC, Edmonds RL (1983) Soil biology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy. I. Concepts and interactions. Elsevier Science Publishers, Amsterdam, pp 193–231

    Google Scholar 

  • van Breemen N, Finzi AC (1998) Plant-soil interactions: ecological aspects and evolutionary implications. In: van Breemen N (ed) Plant-induced soil changes: processes and feedbacks. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • van Oort F, Jongmans AG, Citeau L, Lamy I, Chevallier P (2006) Microscale Zn and Pb distribution patterns in subsurface soil horizons: an indication for metal transport dynamics. Eur J Soil Sci 57:154–166

    Google Scholar 

  • van Oort F, Balabane M, Gaultier JP, Hardy R, Bourenanne H (2001) Dissemination and spatial variability of metal pollutants generated by past metallurgical activity of a zinc smelter complex in surrounding agricultural land (Mortagne-du-Nord, northern France). In: Schmitt JM, Thiry M, van Oort F (eds) Industrie minérale et environnement: aspects géochimiques, hydrogéochimiques, biogéochimiques, vol 40, Mém Sci Terre. ENSMP, Paris, pp 157–160

    Google Scholar 

  • van Oort F, Balabane M, Dahmani-Muller H, Jongmans AG, Nahmani J (2002a) Approche intégrée du fonctionnement d’un système sol-plante fortement pollué en métaux: la pelouse métallicole de Mortagne-du-Nord. In: Baize D, Tercé M (eds) Les Eléments métalliques dans les sols – Approches fonctionnelles et spatiales. INRA-Éditions, Versailles, pp 313–330

    Google Scholar 

  • van Oort F, Gaultier JP, Hardy R, Bourennane H (2002b) Distributions spatiales de métaux et stratégies d’échantillonnage dans les sols du périmètre agricole d’une friche industrielle. In: Baize D, Tercé M (eds) Les Eléments métalliques dans les sols – Approches fonctionnelles et spatiales. INRA-Éditions, Versailles, pp 283–298

    Google Scholar 

  • van Oort F, Labanowski J, Jongmans AG, Thiry M (2007) Le devenir des polluants métalliques dans les sols: révélateur d’impacts de l’activité humaine sur la pédogenèse? Et Gest Sols 14:287–303

    Google Scholar 

  • van Oort F, Jongmans AG, Lamy I, Baize D, Chevallier P (2008) Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions. Eur J Soil Sci 59:925–938

    Google Scholar 

  • van Oort F, Thiry M, Jongmans AG, Bourennane H, Cambier P, Lamy I, Citeau L, Nahmani J (2009) Pollutions métalliques: distributions hétérogènes du Zn, Pb, Cd, et Cu et relations avec l’usage des sols. In: Cambier P, Schvartz C, van Oort F (eds) Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains. Éditions Quæ, Versailles, pp 15–44

    Google Scholar 

  • Wang EX, Bormann FH, Benoit G (1995) Evidence of complete retention of atmospheric lead in the soils of Northern Hardwood forested ecosystems. Environ Sci Technol 29:735–739

    CAS  Google Scholar 

  • Weiss DJ, Rehkamper M, Schoenberg R, McLaughlin M, Kirby J, Campbell PGC, Arnold T, Chapman J, Peel K, Gioia S (2008) Application of non-traditional stable isotope systems to the study of sources and fate of metals in the environment. Environ Sci Technol 42:655–664

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Baize .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baize, D., van Oort, F. (2014). Potentially Harmful Elements in Forest Soils. In: Bini, C., Bech, J. (eds) PHEs, Environment and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8965-3_4

Download citation

Publish with us

Policies and ethics