Skip to main content
Log in

Modal Analysis Using a Virtual Speckle Pattern Based Digital Image Correlation Method: An Application for an Artificial Flapping Wing

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

A conventional three-dimensional digital image correlation (DIC) based on painted speckle patterns has been used widely as a non-contact measurement method to study modal analysis of various structures. Surface treatment using painted speckle patterns might change the structural properties of flexible and lightweight structures such as artificial wings of flapping micro air vehicles. Furthermore, if materials and structures are being serviced, it is essential that their surfaces not be contaminated.

Objective

We propose a new DIC method that is capable of preventing effects of painted speckle patterns on thin flexible structures during vibration measurement.

Methods

We project a virtual speckle pattern onto the surface of structures instead of using painted speckle patterns. For a benchmark test, we demonstrate the effectiveness of the proposed virtual speckle pattern DIC method for measuring the structural characteristics of a cantilever beam. We then apply the proposed DIC method to the vibration measurement of an artificial flapping wing. Finite element analysis (FEA) of the artificial wing is performed in ABAQUS™ to obtain natural frequencies and mode shapes.

Results

The natural frequencies at the first three modes of the artificial wing obtained from the proposed method are higher than those obtained from the conventional 3D DIC because of the smaller weight of the unpainted wing. The results of the mass compensation, laser sensor, and finite element analysis prove the effectiveness of the proposed virtual speckle pattern DIC method.

Conclusion

The proposed DIC method achieves high accuracy and prevents the effect of painted speckle patterns on the dynamic vibration measurement of a thin flexible structure such as an artificial flapping wing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wood RJ (2008) The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Trans Rob 24(2):341–347. https://doi.org/10.1109/tro.2008.916997

    Article  Google Scholar 

  2. Perez-Arancibia NO, Ma KY, Galloway KC, Greenberg JD, Wood RJ (2011) First controlled vertical flight of a biologically inspired microrobot. Bioinspir Biomim 6(3):036009. https://doi.org/10.1088/1748-3182/6/3/036009

    Article  Google Scholar 

  3. Arabagi V, Hines L, Sitti M (2012) Design and manufacturing of a controllable miniature flapping wing robotic platform. Int J Robot Res 31(6):785–800. https://doi.org/10.1177/0278364911434368

    Article  Google Scholar 

  4. Ratti J, Vachtsevanos G (2010) A Biologically-Inspired Micro Aerial Vehicle. J Intell Rob Syst 60(1):153–178. https://doi.org/10.1007/s10846-010-9415-x

    Article  MATH  Google Scholar 

  5. Pfeiffer AT, Lee J-S, Han J-H, Baier H (2010) Ornithopter flight simulation based on flexible multi-body dynamics. J Bionic Eng 7(1):102–111. https://doi.org/10.1016/s1672-6529(09)60189-x

    Article  Google Scholar 

  6. Lee J-s, Kim J-k, Han J-h, Ellington CP (2012) Periodic Tail Motion Linked to Wing Motion Affects the Longitudinal Stability of Ornithopter Flight. J Bionic Eng 9(1):18–28. https://doi.org/10.1016/s1672-6529(11)60093-0

    Article  Google Scholar 

  7. Kumar D, Mohite PM, Kamle S (2019) Dragonfly Inspired Nanocomposite Flapping Wing for Micro Air Vehicles. J Bionic Eng 16(5):894–903. https://doi.org/10.1007/s42235-019-0104-6

    Article  Google Scholar 

  8. Van Truong T, Byun D, Lavine LC, Emlen DJ, Park HC, Kim MJ (2012) Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation. Bioinspir Biomim 7(3):036021. https://doi.org/10.1088/1748-3182/7/3/036021

    Article  Google Scholar 

  9. Combes SA (2010) Materials, Structure, and Dynamics of Insect Wings as Bioinspiration for MAVs. In: Encyclopedia of Aerospace Engineering. https://doi.org/10.1002/9780470686652.eae404

  10. Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212(Pt 1):95–105. https://doi.org/10.1242/jeb.016428

    Article  Google Scholar 

  11. Ha NS, Le VT, Goo NS (2017) Investigation of fracture properties of a piezoelectric stack actuator using the digital image correlation technique. Int J Fatigue 101:106–111. https://doi.org/10.1016/j.ijfatigue.2017.02.020

    Article  Google Scholar 

  12. Truong TV, Le TQ, Byun D, Park HC, Kim M (2012) Flexible Wing Kinematics of a Free-Flying Beetle (Rhinoceros Beetle Trypoxylus Dichotomus). J Bionic Eng 9(2):177–184. https://doi.org/10.1016/s1672-6529(11)60113-3

    Article  Google Scholar 

  13. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46(7):284–327. https://doi.org/10.1016/j.paerosci.2010.01.001

    Article  Google Scholar 

  14. Ramananarivo S, Godoy-Diana R, Thiria B (2011) Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc Natl Acad Sci U S A 108(15):5964–5969. https://doi.org/10.1073/pnas.1017910108

    Article  Google Scholar 

  15. Ha NS, Truong QT, Goo NS, Park HC (2013) Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir Biomim 8(4):046008. https://doi.org/10.1088/1748-3182/8/4/046008

    Article  Google Scholar 

  16. Ha NS, Le VT, Goo NS (2018) Investigation of punch resistance of the Allomyrira dichtoloma beetle forewing. J Bionic Eng 15(1):57–68. https://doi.org/10.1007/s42235-017-0004-6

    Article  Google Scholar 

  17. P-sT N, Tai YC, Nassef H, Ho CM (2001) Titanium-alloy MEMS wing technology for a micro aerial vehicle application. Sensors and Actuators A 89(1–2):95–103. https://doi.org/10.1016/S0924-4247(00)00527-6

    Article  Google Scholar 

  18. Bao XQ, Dargent T, Grondel S, Paquet JB, Cattan E (2011) Improved micromachining of all SU-8 3D structures for a biologically-inspired flying robot. Microelectron Eng 88(8):2218–2224. https://doi.org/10.1016/j.mee.2011.01.065

    Article  Google Scholar 

  19. Ha NS, Nguyen QV, Goo NS, Park HC (2012) Static and Dynamic Characteristics of an Artificial Wing Mimicking an Allomyrina Dichotoma Beetle’s Hind Wing for Flapping-Wing Micro Air Vehicles. Exp Mech 52(9):1535–1549. https://doi.org/10.1007/s11340-012-9611-7

    Article  Google Scholar 

  20. Combes SA, Daniel TL (2003) Flexural stiffness in insect wings. I. Scaling and the influence of wing venation. J Exp Biol 206 (Pt 17):2979–2987. https://doi.org/10.1242/jeb.00523

  21. Zeng LiJiang, Matsumoto H, Sunada S, Ohnuki T, Kawachi K (1995) Two-dimensional, noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Opt Eng 34(4):1226–1232. https://doi.org/10.1117/12.197080

    Article  Google Scholar 

  22. Chen J-S, Chen J-Y, Chou Y-F (2008) On the natural frequencies and mode shapes of dragonfly wings. J Sound Vib 313(3–5):643–654. https://doi.org/10.1016/j.jsv.2007.11.056

    Article  Google Scholar 

  23. Ha NS, Vang HM, Goo NS (2015) Modal Analysis Using Digital Image Correlation Technique: An Application to Artificial Wing Mimicking Beetle’s Hind Wing. Exp Mech 55(5):989–998. https://doi.org/10.1007/s11340-015-9987-2

    Article  Google Scholar 

  24. Caponero MA, Pasqua P, Paolozzi A, Peroni I (2000) Use of Holographic Interferometry and Electronic Speckle Pattern Interferometry for Measurements of Dynamic Displacements. Mech Syst Signal Process 14(1):49–62. https://doi.org/10.1006/mssp.1999.1265

    Article  Google Scholar 

  25. Pedrini G, Tiziani HJ (1994) Double-pulse electronic speckle interferometry for vibration analysis. Appl Opt 33(34):7857–7863. https://doi.org/10.1364/AO.33.007857

    Article  Google Scholar 

  26. Stetson KA (2014) Two-Dimensional Vibration Analysis via Digital Holography. Exp Tech 40(2):483–487. https://doi.org/10.1007/s40799-016-0051-7

    Article  Google Scholar 

  27. Yang L, Steinchen W, Kupfer G, Mäckel P, Vössing F (1998) Vibration analysis by means of digital shearography. Opt Lasers Eng 30(2):199–212. https://doi.org/10.1016/S0143-8166(98)00016-5

    Article  Google Scholar 

  28. Standbridge AB, Ewins DJ (1999) Modal testing using a scanning laser Doppler vibrometer. Mech Syst Signal Process 13(2):255–270. https://doi.org/10.1006/mssp.1998.1209

    Article  Google Scholar 

  29. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160. https://doi.org/10.1364/josaa.72.000156

    Article  Google Scholar 

  30. Gorthi SS, Rastogi P (2010) Fringe projection techniques: Whither we are? Opt Lasers Eng 48(2):133–140. https://doi.org/10.1016/j.optlaseng.2009.09.001

    Article  Google Scholar 

  31. Grédiac M, Blaysat B, Sur F (2017) A Critical Comparison of Some Metrological Parameters Characterizing Local Digital Image Correlation and Grid Method. Exp Mech 57(6):871–903. https://doi.org/10.1007/s11340-017-0279-x

    Article  Google Scholar 

  32. Su X, Zhang Q (2010) Dynamic 3-D shape measurement method: A review. Opt Lasers Eng 48(2):191–204. https://doi.org/10.1016/j.optlaseng.2009.03.012

    Article  Google Scholar 

  33. Felipe-Sesé L, Siegmann P, Díaz FA, Patterson EA (2014) Simultaneous in-and-out-of-plane displacement measurements using fringe projection and digital image correlation. Opt Lasers Eng 52:66–74. https://doi.org/10.1016/j.optlaseng.2013.07.025

    Article  Google Scholar 

  34. Felipe-Sesé L, Molina-Viedma ÁJ, López-Alba E, Díaz FA (2019) FP+DIC for low-cost 3D full-field experimental modal analysis in industrial components. Mech Syst Signal Process 128:329–339. https://doi.org/10.1016/j.ymssp.2019.04.004

    Article  Google Scholar 

  35. Felipe-Sesé L, Molina-Viedma Á, López-Alba E, Díaz F (2018) Dynamic displacements measurement employing fringe projection and digital image correlation. Proceedings 2 (8). https://doi.org/10.3390/icem18-05366

  36. Felipe-Sese L, Molina-Viedma AJ, Lopez-Alba E, Diaz FA (2018) RGB colour encoding improvement for three-dimensional shapes and displacement measurement using the integration of fringe projection and digital image correlation. Sensors (Basel) 18 (9). https://doi.org/10.3390/s18093130

  37. Peters WH, Ranson WF (1982) Digital Imaging Techniques In Experimental Stress Analysis. Opt Eng 21(3):427–431. https://doi.org/10.1117/12.7972925

    Article  Google Scholar 

  38. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244. https://doi.org/10.1007/BF02325092

    Article  Google Scholar 

  39. Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4 (3):143–150. https://doi.org/10.1016/0262-8856(86)90057-0

  40. Le VT, Goo NS (2021) Design, Fabrication, and Testing of Metallic Thermal Protection Systems for Spaceplane Vehicles. J Spacecr Rocket 1–18. https://doi.org/10.2514/1.A34908

  41. Ha NS, Le VT, Goo NS, Kim JY (2017) Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process. International Journal of Aeronautical and Space Sciences 18(2):206–214. https://doi.org/10.5139/ijass.2017.18.2.206

    Article  Google Scholar 

  42. Wu P, Stanford B, Bowman W, Schwartz A, Ifju P (2009) Digital Image Correlation Techniques for Full-Field Displacement Measurements of Micro Air Vehicle Flapping Wings. Exp Tech 33(6):53–58. https://doi.org/10.1111/j.1747-1567.2008.00450.x

    Article  Google Scholar 

  43. Ha NS, Jin T, Goo NS (2013) Modal analysis of an artificial wing mimicking an Allomyrina dichotoma beetle’s hind wing for flapping-wing micro air vehicles by noncontact measurement techniques. Opt Lasers Eng 51(5):560–570. https://doi.org/10.1016/j.optlaseng.2012.12.012

    Article  Google Scholar 

  44. Nguyen H, Nguyen D, Wang Z, Kieu H, Le M (2015) Real-time, high-accuracy 3D imaging and shape measurement. Appl Opt 54(1):A9-17. https://doi.org/10.1364/AO.54.0000A9

    Article  Google Scholar 

  45. Nguyen H, Liang J, Wang Y, Wang Z (2021) Accuracy assessment of fringe projection profilometry and digital image correlation techniques for three-dimensional shape measurements. Journal of Physics: Photonics 3 (1). https://doi.org/10.1088/2515-7647/abcbe4

  46. Niu Y, Shao S, Park SB, Kao C-L (2017) A Novel Speckle-Free Digital Image Correlation Method for In Situ Warpage Characterization. IEEE Transactions on Components, Packaging and Manufacturing Technology 7(2):276–284. https://doi.org/10.1109/tcpmt.2016.2635581

    Article  Google Scholar 

  47. Sriram P, Hanagud S (1988) Projection-speckle digital-correlation method for surface-displacement measurement. Exp Mech 28(4):340–345. https://doi.org/10.1007/BF02325173

    Article  Google Scholar 

  48. Wu Z, Wright MT, Ma X (2010) The experimental evaluation of the dynamics of fluid-loaded microplates. J Micromech Microeng 20 (7). https://doi.org/10.1088/0960-1317/20/7/075034

  49. Chou Y-F, Wang L-C (2001) On the Modal Testing of Microstructures: Its Theoretical Approach and Experimental Setup. J Vib Acoust 123(1):104–109. https://doi.org/10.1115/1.1320814

    Article  Google Scholar 

  50. Ozdoganlar OB, Hansche BD, Carne T (2005) Experimental modal analysis for microelectromechanical systems. Exp Mech 45(6):498–506. https://doi.org/10.1177/0014485105059991

    Article  Google Scholar 

  51. FASTCAM-APX RS Hardware Manual. Photron Ltd, (2006)

  52. Jones EM, Iadicola MA (2018) A good practices guide for digital image correlation. International Digital Image Correlation Society

  53. Schmidt T, Tyson J, Galanulis K (2003) Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part I. Exp Tech 27(3):47–50. https://doi.org/10.1111/j.1747-1567.2003.tb00115.x

    Article  Google Scholar 

  54. Le VT, Ha NS, Jin T, Goo NS, Kim JY (2016) Thermal interaction of a circular plate-ring structure using digital image correlation technique and infrared heating system. J Mech Sci Technol 30(9):4363–4372. https://doi.org/10.1007/s12206-016-0750-0

    Article  Google Scholar 

  55. Le VT, Goo NS (2019) Thermomechanical performance of bio-inspired corrugated-core sandwich structure for a thermal protection system panel. Appl Sci 9 (24). https://doi.org/10.3390/app9245541

  56. GOM (2015) Gom correlate Professional V8 SR1 manual basic.

  57. Brincker R (2015) Ventura C (2015) Introduction to Operational Modal Analysis. John Wiley & Sons, Chichester, UK

    Book  Google Scholar 

  58. Richardson MHJS, Vibration (1997) Is it a mode shape, or an operating deflection shape? 31 (1):54–67

  59. Bae W, Kyong Y, Dayou J, Park K-h, Wang S (2011) Scaling the Operating Deflection Shapes Obtained from Scanning Laser Doppler Vibrometer. J Nondestr Eval 30(2):91–98. https://doi.org/10.1007/s10921-011-0094-8

    Article  Google Scholar 

  60. McHargue PL, Richardson MH Operating deflection shapes from time versus frequency domain measurements. In: 11th IMAC Conference, 1993. Citeseer, p 108

  61. Le VT, Goo NS (2020) Dynamic characteristics and damage detection of a metallic thermal protection system panel using a three-dimensional point tracking method and a modal assurance criterion. Sensors (Basel) 20 (24). https://doi.org/10.3390/s20247185

  62. Rizo-Patron S, Sirohi J (2016) Operational Modal Analysis of a Helicopter Rotor Blade Using Digital Image Correlation. Exp Mech 57(3):367–375. https://doi.org/10.1007/s11340-016-0230-6

    Article  Google Scholar 

  63. Morante R, Wang Y, Chokshi N, Kenneally R, Norris W (1999) Evaluation of modal combination methods for seismic response spectrum analysis.

  64. Goodfellow (n.d) Carbon/Epoxy Composite - Material Information. http://www.goodfellow.com/E/Carbon-Epoxy-Composite.html. Accessed 20 July 2020

  65. Becker H (1965) Elastic modulus of Mylar sheet. J Appl Polym Sci 9(3):911–916. https://doi.org/10.1002/app.1965.070090309

    Article  Google Scholar 

  66. Combes SA, Daniel TL (2003) Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J Exp Biol 206(Pt 17):2999–3006. https://doi.org/10.1242/jeb.00502

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2019R1A2B5B01069687). The authors are grateful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Goo.

Ethics declarations

Conflict of Interests

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, N.V., Le, V.T., Park, H.C. et al. Modal Analysis Using a Virtual Speckle Pattern Based Digital Image Correlation Method: An Application for an Artificial Flapping Wing. Exp Mech 62, 253–270 (2022). https://doi.org/10.1007/s11340-021-00775-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00775-w

Keywords

Navigation