Skip to main content
Log in

Mechanically Regularized FE DIC for Heterogeneous Materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In situ tensile tests in a scanning electron microscope (SEM) have been conducted on a 8-layer 5-harness satin carbon fibre and epoxy matrix composite to observe the first stages of damage at the scale of fibres and matrix. A speckle pattern based on a suspension of alumina particles was applied onto the surface of the specimen to facilitate the use of digital image correlation (DIC). Local and finite element (FE) DIC are compared on pictures acquired during the tensile tests, with and without a speckle pattern. FE DIC with mechanical regularization was found to be the only approach able to measure displacement fields at a fine enough resolution in both cases. This method, initially created for homogeneous materials, was then adapted to heterogeneous materials. First, a microstructure consistent mesh was created and used for correlation purposes. Second, the difference between the mechanical properties of the constituents is taken into account in the mechanical regularization. Last, the accuracy of the method is analysed. The adaptation presented herein was proved to be able to measure displacement fields in the matrix between fibres with an error of 10 nm (a fifth of a pixel) and to detect the initiation of the first damage mechanisms by means of the mechanical residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spoltman MW, Bowerman RD, Edinger RL (1989) Composite aircraft propeller blade, US Patent 4,810,167

  2. Daggumati S, De Baere I, Van Paepegem W, Degrieck J, Xu J, Lomov SV, Verpoest I (2010) Local damage in a 5-harness satin weave composite under static tension: Part I–experimental analysis. Compos Sci Technol 70(13):1926–1933

    Article  Google Scholar 

  3. Gao F, Boniface L, Ogin SL, Smith PA, Greaves RP (1999) Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. observations of damage accumulation. Compos Sci Technol 59(1):123–136

    Article  Google Scholar 

  4. Ivanov DS, Baudry F, Van Den Broucke B, Lomov SV, Xie H, Verpoest I (2009) Failure analysis of triaxial braided composite. Compos Sci Technol 69(9):1372–1380

    Article  Google Scholar 

  5. Osada T, Nakai A, Hamada H (2003) Initial fracture behavior of satin woven fabric composites. Compos Struct 61(4):333–339

    Article  Google Scholar 

  6. Yang L, Yan Y, Liu Y, Ran Z (2012) Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos Sci Technol 72(15):1818–1825. https://www.overleaf.com/project/5c4c93511913523b26fab11a

    Article  Google Scholar 

  7. Lisle T, Bouvet C, Pastor ML, Rouault T, Margueres P (2015) Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts. J Mater Sci 50(18):6154–6170

    Article  Google Scholar 

  8. Doitrand A, Fagiano C, Chiaruttini V, Leroy FH, Mavel A, Hirsekorn M (2015) Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven polymer matrix composites under quasi-static tensile loading. Compos Sci Technol 119:1–11

    Article  Google Scholar 

  9. Koimtzoglou C, Dassios KG, Galiotis C (2009) Effect of fatigue on the interface integrity of unidirectional Cf-reinforced epoxy resin composites. Acta Mater 57(9):2800–2811

    Article  Google Scholar 

  10. Herrera-Franco PJ, Drzal LT (1992) Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23(1):2–27

    Article  Google Scholar 

  11. Lecomte-Grosbras P, Palush B, Brieu M, De Saxcé G, Sabatier L (2009) Interlaminar shear strain measurement on angle-ply laminate free edge using digital image correlation. Compos A: Appl Sci Manuf 40 (12):1911–1920

    Article  Google Scholar 

  12. Leong M, Overgaard LCT, Thomsen OT, Lund E, Daniel IM (2012) Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Compos Struct 94(2):768–778

    Article  Google Scholar 

  13. Fitoussi J, Meraghni F, Jendli Z, Hug G, Baptiste D (2005) Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos Sci Technol 65(14):2174–2188

    Article  Google Scholar 

  14. Canal LP, González C, Molina-Aldareguía JM, Segurado J, LLorca J (2012) Application of digital image correlation at the microscale in fiber-reinforced composites. Compos A: Appl Sci Manuf 43(10):1630–1638

    Article  Google Scholar 

  15. Mortell DJ, Tanner DA, McCarthy CT (2014) In-situ SEM study of transverse cracking and delamination in laminated composite materials. Compos Sci Technol 105:118–126

    Article  Google Scholar 

  16. O’Dwyer DJ, O’Dowd NP, McCarthy CT (2014) In-situ SEM mechanical testing of miniature bonded joints. Int J Adhes Adhes 50:57–64

    Article  Google Scholar 

  17. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  18. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties–a review. Strain 42(2):69–80

    Article  Google Scholar 

  19. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001

    Article  Google Scholar 

  20. Kammers AD, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53(9):1743–1761

    Article  Google Scholar 

  21. David C, Passieux JC, Bugarin F, David C, Périé JN, Robert L (2015) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mech 55(1):121–137

    Article  Google Scholar 

  22. Brillaud J, Lagattu F (2002) Limits and possibilities of laser speckle and white-light image-correlation methods: Theory and experiments. Appl Opt 41(31):6603–6613

    Article  Google Scholar 

  23. Mehdikhani M, Aravand M, Sabuncuoglu B, Callens MG, Lomov SV, Gorbatikh L (2016) Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Compos Struct 140:192–201

    Article  Google Scholar 

  24. Li N, Guo S, Sutton MA (2011) Recent progress in e-beam lithography for sem patterning. In: MEMS and Nanotechnology, vol 2. Springer, pp 163–166

  25. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5(3):491–502

    Article  Google Scholar 

  26. Tanaka Y, Naito K, Kishimoto S, Kagawa Y (2011) Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology 22(11):115704

    Article  Google Scholar 

  27. Collette SA, Sutton MA, Miney P, Reynolds AP, Li X, Colavita PE, Scrivens WA, Luo Y, Sudarshan T, Muzykov P, et al. (2004) Development of patterns for nanoscale strain measurements: I. fabrication of imprinted Au webs for polymeric materials. Nanotechnology 15(12):1812–1817

    Article  Google Scholar 

  28. Wang H, Xie H, Li Y, Zhu J (2012) Fabrication of micro-scale speckle pattern and its applications for deformation measurement. Meas Sci Technol 23(3):035402

    Article  Google Scholar 

  29. Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47(1):51–62

    Article  Google Scholar 

  30. Sutton MA, Mingqi C, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150

    Article  Google Scholar 

  31. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. European Journal of Mechanics 20:169–187

    Article  MATH  Google Scholar 

  32. Sun Y, Pang JHL, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363

    Article  Google Scholar 

  33. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin–Le Châtelier bands. Exp Mech 46(6):789–803

    Article  Google Scholar 

  34. Mortazavi F (2013) Development of a global digital image correlation approach for fast high-resolution displacement measurements. Doctoral dissertation, École Polytechnique de Montréal

  35. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272

    Article  MathSciNet  MATH  Google Scholar 

  36. Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Numer Methods Eng 92(6):531–550

    Article  MathSciNet  MATH  Google Scholar 

  37. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples: the equilibrium gap method as a mechanical filter. European Journal of Computational Mechanics/Revue Europeenne de Mé,canique Numériqué 18(3-4):285–306

    MATH  Google Scholar 

  38. Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal Eng Des 48:330–343

    Article  Google Scholar 

  39. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  40. Correlated Solutions, Vic-2d. Reference Manual (2009)

  41. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631–660

    Article  MATH  Google Scholar 

  42. Sutton MA (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65(5):1–23

    Article  Google Scholar 

  43. Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse problems 21(2):R1

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (disc). Opt Eng 40(8):1613–1620

    Article  Google Scholar 

  45. Asp LE (1998) The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58(6):967–977

    Article  Google Scholar 

  46. Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres. Mater Des 32(2):788–795

    Article  Google Scholar 

  47. HexcelCorporation (1998) HexFlow®RTM 6 Product Data. http://www.hexcel.com/Resources/DataSheets/RTM-Data-Sheets/RTM6_global.pdf

  48. HexcelCorporation (1998) HexTow®AS7 product data. http://www.hexcel.com/user_area/content_media/raw/AS7_Industrial_HexTow_DataSheet.pdf

  49. Maurin R, Davies P, Baral N, Baley C (2008) Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater 15(2):61–73

    Article  Google Scholar 

  50. Herráez M, Fernández A, Lopes CS, González C (2016) Strength and toughness of structural fibres for composite material reinforcement. Phil Trans R Soc A 374(2071):1–11

    Article  Google Scholar 

  51. Morelle XP, Chevalier J, Bailly C, Pardoen T, Lani F (2017) Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech Time-Depend Mater 21:419–454

    Article  Google Scholar 

  52. Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787

    Article  Google Scholar 

  53. Guery A, Latourte F, Hild F, Roux S (2013) Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation. Meas Sci Technol 25(1):15401

    Article  Google Scholar 

  54. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17(10):2613–2622

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Safran Composites. The authors also thank D. Boivin and N. Horezan for all the fruitful discussions and advises concerning the optimal use of the SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Naylor or M. Hirsekorn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naylor, R., Hild, F., Fagiano, C. et al. Mechanically Regularized FE DIC for Heterogeneous Materials. Exp Mech 59, 1159–1170 (2019). https://doi.org/10.1007/s11340-019-00529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00529-9

Keywords

Navigation