Skip to main content

Advertisement

Log in

Mechanical Properties of Hard W-C Coating on Steel Substrate Deduced from Nanoindentation and Finite Element Modeling

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Mechanical properties of a hard and stiff W-C coating on steel substrate have been investigated using nanoindentation combined with finite element modeling (FEM) and extended FEM (XFEM). The significant pile-up observed around the indents in steel substrate caused an overestimation of hardness and indentation modulus. A simple geometrical model, considering the additional contact surfaces due to pile-up, has been proposed to reduce this overestimation. The presence of W-C coating suppressed the pile-up in the steel substrate and a transition to sink-in behavior occurred. The FEM simulations adequately reproduced the surface topography of the indents in the substrate and coating/substrate systems as well. The maximum principal stresses of the indented W-C/steel coated system were tensile; they were always located in the coating and evolved in 3 stages. Cohesive cracking occurred during loading in the sink-in zone (stage III) when the ultimate tensile strength (σ max ) of the coating was reached. The obtained hardness (H c ), indentation modulus (E c ), yield stress (Y) and strength (σ max ) of the W-C coating were H c = 20 GPa, E c = 250 GPa, Y = 9.0 GPa and σ max = 9.35 GPa, respectively. XFEM resulted in fracture energy of the W-C coating of G = 38.1 J · m-2 and fracture toughness of K IC = 3.5 MPa · m0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  2. Bückle H (1973) In: Westbrook JW, Conrad H (eds) The science of hardness testing and its applications. Amer Soc Metals, Metals Park, pp 453–491

    Google Scholar 

  3. Jőnsson B, Hogmark S (1984) Hardness measurement of thin films. Thin Solid Films 114:257–269

    Article  Google Scholar 

  4. Iost A, Bigot R (1996) Hardness of coatings. Suf Coat Technol 80:117–120

    Article  Google Scholar 

  5. Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) On the hardness of coated systems. Surf Coat Technol 99:171–183

    Article  Google Scholar 

  6. Saha R, Nix WD (2001) Soft films on hard substrates—nanoindentation of tungsten films on sapphire substrates. Mater Sci Eng A 319–321:898–901

    Article  Google Scholar 

  7. Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38

    Article  Google Scholar 

  8. Beegan D, Chowdhury S, Laugier MT (2004) The nanoindentation behaviour of hard and soft films on silicon substrates. Thin Solid Films 466:167–174

    Article  Google Scholar 

  9. Jung YG, Lawn BR, Martyniuk M, Huang H, Hu XZ (2004) Evaluation of elastic modulus and hardness of thin films by nanoindentation. J Mater Res 19:3076–3080

    Article  Google Scholar 

  10. Zyganitidis I, Kalfagiannis N, Logothetidis S (2009) Ultra sharp Berkovich indenter used for nanoindentation studies of TiB2 thin films. Mater Sci Eng B 165:198–201

    Article  Google Scholar 

  11. Iost A, Guillemot G, Rudermann Y, Bigerelle M (2012) A comparison of the models for predicting the true hardness of thin films. Thin Solid Films 524:229–237

    Article  Google Scholar 

  12. Chen J, Bull S (2009) On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum 83:911–920

    Article  Google Scholar 

  13. ISO 14577-4 (2007) Metallic materials- Instrumented indentation test for hardness and materials parameters—part 4 Test method for metallic and non-metallic coatings

  14. Cai X, Bangert H (1995) Hardness measurement on thin films—determining the critical ratio of depth to thickness using FEM. Thin Solid Films 264:59–71

    Article  Google Scholar 

  15. Kataria S, Goyal S, Dash S, Sandhya R, Mathew MT, Tyagi AK (2012) Evaluation of nano-mechanical properties of hard coatings on a soft substrate. Thin Solid Films 522:297–303

    Article  Google Scholar 

  16. Bouzakis KD, Michailidis N, Hadjiyiannis S, Skordaris G, Erkens G (2003) The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coating stress-strain laws by nanoindentation. Mat Character 49:149–156

    Article  Google Scholar 

  17. Jiang WG, Su JJ, Feng XQ (2008) Effect of surface roughness on nanoindentation test of thin films. Eng Fracture Mech 75:4965–4972

    Article  Google Scholar 

  18. Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058

    Article  Google Scholar 

  19. Moharrami N, Bull SJ (2014) A comparison of nanoindentation pile-up in bulk materials and thin films. Thin Solid Films 572:189–199

    Article  Google Scholar 

  20. Bull SJ, Rickerby DS (1990) New developments in the modelling of the hardness and scratch adhesion of thin films. Surf Coat Technol 42:149–164

    Article  Google Scholar 

  21. Suresh S, Giannakopoulos AE (1998) A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater 46:5755–5767

    Article  Google Scholar 

  22. Li X, Bhushan B (2000) Development of continuous stiffness measurement technique for composite magnetic tapes. Scripta Mater 42:929–935

    Article  Google Scholar 

  23. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Character 48:11–36

    Article  Google Scholar 

  24. Bull SJ, Korsunsky AM (1998) Mechanical properties of thin carbon overcoats. Tribol Int 31:547–551

    Article  Google Scholar 

  25. Puchi-Cabrera ES (2002) A new model for the computation of composite hardness of coated systems. Surf Coat Technol 160:177–186

    Article  Google Scholar 

  26. Menčík J, Munz D, Quandt E, Weppelmann ER, Swain MV (1997) Determination of elastic modulus of thin layers using nanoindentation. J Mater Res 12:2475–2484

    Article  Google Scholar 

  27. Bobji MS, Biswas SK (1999) Deconvolution of hardness from data obtained from nanoindentation of rough surfaces. J Mater Res 14:2259–2268

    Article  Google Scholar 

  28. Bhattacharya AK, Nix WD (1988) Finite element simulations of indentation experiments. Int J Solid Struct 24:881–891

    Article  Google Scholar 

  29. Lichinchi M, Lenardi C, Haupt J, Vitali R (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312:240–248

    Article  Google Scholar 

  30. Bressan JD, Tramontin A, Rosa C (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258:0115–0122

    Article  Google Scholar 

  31. Pelegri AA, Huang X (2008) Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Compos Sci Technol 68:147–155

    Article  Google Scholar 

  32. Liu S, Huang H, Gu Y (2012) Deconvolution of mechanical properties of thin films from nanoindentation measurement via finite element optimization. Thin Solid Films 526:183–190

    Article  Google Scholar 

  33. MacKerle J (2005) Coatings and surface modification technologies: a finite element bibliography (1995-2005) Modelling and Simulation. Mater Sci Eng 13:935–979

    Google Scholar 

  34. Fukumasu NK, Souza RM (2014) Numerical evaluation of cohesive and adhesive failure modes during the indentation of coated systems with compliant substrates. Surf Coat Technol 260:266–271

    Article  Google Scholar 

  35. Burnett PJ, Rickerby DS (1987) The mechanical properties of wear-resistant coatings: I: modelling of hardness behaviour. Thin Solid Films 154:403–416

    Article  Google Scholar 

  36. Tsui TY, Oliver WC, Pharr GM (1996) Influences of stress on the measurement of mechanical properties using nanoindentation: part I. experimental studies in an aluminum alloy. J Mater Res 11:752–759

    Article  Google Scholar 

  37. McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13:1300–1306

    Article  Google Scholar 

  38. Giannakopoulos AE, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater 40:1191–1198

    Article  Google Scholar 

  39. Kese K, Li ZC, (2006) Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. 55:699–702

  40. Zhou X, Jiang Z, Wang H, Yu R (2008) Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater Sci Eng A 488:318–332

    Article  Google Scholar 

  41. Sullivan M, Prorok BC (2016) Evaluating pile-up and sink-in during nanoindentation of thin films. Conf Proc Soc Exp Mech Ser, MEMS Nanotechnol 5:45–50

    Article  Google Scholar 

  42. Bo Z, Prorok BC (2010) A new paradigm in thin film indentation. 25:1671–1678

  43. Zhang S, Sun D, Fu Y, Du H (2005) Toughness measurement of thin films: a critical review. Surf Coat Technol 198:74–84

    Article  Google Scholar 

  44. Malzbender J, de Witt G (2002) A model to determine the interfacial fracture toughness for chipped coatings. Surf Coat Technol 154:21–26

    Article  Google Scholar 

  45. Chen J, Bull SJ (2009) Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films 517:3704–3711

    Article  Google Scholar 

  46. Chen J (2012) On the determination of coating toughness during nanoindentation. Surf Coat Technol 206:3064–3068

    Article  Google Scholar 

  47. Wang AN, Yu PG, Huang JH (2014) Fracture toughness measurement on TiN hard coatings using internal energy induced cracking. Surf Coat Technol 239:20–27

    Article  Google Scholar 

  48. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  49. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in Applied Mechanics. Academic, NY, pp 55–129

    Google Scholar 

  50. Hu J, Chou YK, Thompson RG (2003) Cohesive zone effect on coating failure evaluations of diamond-coated tools. Surf Coat Technol 203:730–735

    Article  Google Scholar 

  51. Rehman H, Ahmed F, Schmid C, Schaufler J, Durst K (2012) Study on the deformation mechanics of hard brittle coatings on ductile substrates using in-situ tensile testing and cohesive zone FEM modeling. Surf Coat Technol 207:163–169

    Article  Google Scholar 

  52. Huang R, Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method. part ii: numerical applications. Int J Solids Struct 40:7539–7552

    Article  MATH  Google Scholar 

  53. Kot M, Rakowski W, Lackner JM, Major T (2013) Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater Des 43:99–111

    Article  Google Scholar 

  54. Palmquist JP, Czigany Z, Odén M, Neidhardt J, Hultman L, Jansson U (2003) Magnetron sputtered W-C films with C60 as carbon source. Thin Solid Films 444:29–37

    Article  Google Scholar 

  55. Czyzniewski A (2003) Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433:180–185

    Article  Google Scholar 

  56. Abdelouahdi K, Sant C, Legrand-Buscema C, Aubert P, Perrière J, Renou G, Houdy P (2006) Microstructural and mechanical investigations of tungsten carbide films deposited by reactive RF sputtering. Surf Coat Technol 200:6469–6473

    Article  Google Scholar 

  57. Abad MD, Muñoz-Márquez MA, El Mrabet S, Justo A, Sánchez-López JC (2010) Tailored synthesis of nanostructured WC/a-C coatings by dual magnetron sputtering. Surf Coat Technol 204:3490–3500

    Article  Google Scholar 

  58. Lofaj F, Ferdinandy M, Cempura G, Dusza J (2012) Nanoindentation, AFM and tribological properties of thin nc-WC/a-C coatings. J. Eur Ceram Soc 32:2043–2051

    Article  Google Scholar 

  59. Hviščová P, Kvetková L, Lofaj F, Novák M, Ferdinandy M, Podoba R (2015) Mechanical and tribological properties of HiPIMS and HiTUS W-C based coatings. Key Eng Mater 662:99–102

    Article  Google Scholar 

  60. Klein CA (1992) Anisotropy of Young’s modulus and Poisson’s ratio in diamond. Mat Res Bull 27:1407–1414

    Article  Google Scholar 

  61. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  Google Scholar 

  62. Suetin DV, Shein IR, Ivanowskii AL (2008) Elastic and electronic properties of hexagonal and cubic polymorphs of tungsten monocarbide WC and mononitride WN from first principle calculations. Phys Stat Sol b 425:1590–1597

    Article  Google Scholar 

  63. Bucaille JL, Stauss S, Felder E, Michler J (2003) Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater 51:1663–1678

    Article  Google Scholar 

  64. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modeling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51:943–960

    Article  MATH  Google Scholar 

  65. Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method. part I. computer implementation. Int J Solids Struct 40:7512–7537

    Article  MATH  Google Scholar 

  66. Lee JH, Gao ZF, Johanns KE, Pharr GM (2012) Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater 60:5448–5467

    Article  Google Scholar 

  67. Yu N, Polycarpou AA, Conry TF (2004) Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation. Thin Solid Films 450:295–303

    Article  Google Scholar 

  68. Takahashi T, Freise EJ (1965) Determination of the slip systems in single crystals of tungsten monocarbide. Philos Mag 12:1–8

    Article  Google Scholar 

  69. French DN, Thomas DA (1965) Hardness anisotropy and slip in WC crystals. Trans Metal Soc AIME 233:950–952

    Google Scholar 

  70. Cuadrado N et al (2011) Effect of crystal anisotropy on the mechanical properties of WC embedded in WC-Co cemented carbides. Euro PM-Hard Mater 1:215–220

    Google Scholar 

  71. Roebuck B, Klose P, Mingard KP (2012) Hardness of hexagonal tungsten carbide crystals as a function of orientation. Acta Mater 60:6131–6143

    Article  Google Scholar 

  72. Duszová A, Halgaš R, Bľanda M, Hvizdoš P, Lofaj F, Dusza J, Morgiel J (2013) Nanoindentation of WC-Co hardmetals. J Eur Ceram Soc 33:2227–2232

    Article  Google Scholar 

  73. Csanádi T, Bľanda M, Chinh NQ, Hvizdoš P, Dusza J (2015) Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals. Acta Mater 83:397–407

    Article  Google Scholar 

  74. Harris JW, Stocker H (1998) Segment of a circle. In: Handbook of mathematics and computational science. Springer, New York, pp 92–93

    Chapter  Google Scholar 

  75. Zhu L-N, Xu B-S, Wang H-D, Wang C-B (2010) Determination of hardness of plasma-sprayed FeCrBSi coating on steel substrate by nanoindentation. Mater Sci Eng A 528:425–428

    Article  Google Scholar 

  76. Tabor D (1970) The hardness of solids. Rev Phys Technol 1:145–179

    Article  Google Scholar 

  77. Csanádi T et al (2014) Deformation characteristics of WC micropillars. J Eur Ceram Soc 34:4099–4103

    Article  Google Scholar 

  78. Chai H, Lawn BR (2004) Fracture mode transitions in brittle coatings on compliant substrates as a function of thickness. J Mater Res 19:1752–1761

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the projects “Research Centre of Advanced Materials and Technologies for Recent and Future Applications” PROMATECH, ITMS project code: 26220220186, and projects APVV-14-0173, VEGA 2/0098/14 and VEGA 2/0187/15 is kindly acknowledged. The assistance of Petra Hviščová with coating deposition is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lofaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csanádi, T., Németh, D. & Lofaj, F. Mechanical Properties of Hard W-C Coating on Steel Substrate Deduced from Nanoindentation and Finite Element Modeling. Exp Mech 57, 1057–1069 (2017). https://doi.org/10.1007/s11340-016-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0190-x

Keywords

Navigation