Skip to main content

Advertisement

Log in

Toughness measurement of thin films based on circumferential cracks induced at conical indentation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In the present study, circumferential ring cracks were produced in two types of alumina coatings under conical indentation. The alumina coatings were produced using reactive dual pulsed magnetron sputtering. The coatings were deposited at 150 and \(530\,^\circ \hbox {C}\) which resulted in coatings with hardness values of \(9.1\pm 0.2\) and \(20.7\pm 1.1\) GPa, respectively. The coating fractures were studied using scanning electron microscopy and the critical parameters for fracture: load, depth and crack radius, were determined for a range of coating thicknesses for both series. The crack behavior is compared to a numerical finite element model of the system. The model assumes the coating to be linear elastic while plasticity was included in the substrate. The critical parameters for different values of fracture toughness were extracted from the FEM stress field using closed-form expressions. The behavior of the simulated data and the experimental data was found to follow similar trends for all the investigated critical parameters. Furthermore, it was found that the critical load is the fracture parameter from which a measure for the fracture toughness is most accurately obtained. The hard coatings were observed to have higher fracture toughness than the softer coatings (200 vs. \(75 \, \hbox {J/m}^{2}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdul-Baqi A, der Giessen EV (2002) Numerical analysis of indentation induced cracking of brittle coatings on ductile substrates. Int J Solids Struct 39:1427–1442

    Article  Google Scholar 

  • Bathe K-J (1996) Finite element procedures, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Beuth JL (1992) Cracking of thin bonded films in residual tension. Int J Solids Struct 29(13):1657–1675

    Article  Google Scholar 

  • Bull SJ (2011) Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass. C R Mec 339(7–8):518–531. doi:10.1016/j.crme.2011.05.009

    Article  Google Scholar 

  • Chai H, Lawn B, Wuttiphan S (1999) Fracture modes in brittle coatings with large interlayer modulus mismatch. J Mater Res 14(9):3805–3817

    Google Scholar 

  • Chai H, Lawn B (2004) Fracture mode transitions in brittle coatings on compliant substrates as function of thickness. J Mater Res 19(6):1752–1761

    Article  Google Scholar 

  • Chen Z, Cotterell B, Wang W (2002) The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech 69(5):597–603. doi:10.1016/S0013-7944(01)00104-7

    Article  Google Scholar 

  • Courtney TH (1990) Mechanical behavior of materials, 1st edn. McGraw-Hill, New York City

    Google Scholar 

  • Di Maio D, Roberts S (2011) Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J Mater Res 20(02):299–302. doi:10.1557/JMR.2005.0048

    Article  Google Scholar 

  • Doege E, Meyer-Nolkemper H, Saeed I (1986) Fliesskurvenatlas metallischer Werkstoffe. Hanser, München

    Google Scholar 

  • Fischercripps A (2006) Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200(14–15):4153–4165. doi:10.1016/j.surfcoat.2005.03.018

    Article  Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity: I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  • Guzman MSD, Newbauer G, Flinn P, Nix WD (1993) The role of indentation depth on the measured hardness of materials. Mater Res Symp Proc 308:613–618

    Article  Google Scholar 

  • Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S (2003) A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254(3–4):278–291. doi:10.1016/S0043-1648(02)00297-1

    Article  Google Scholar 

  • Li X, Diaot D, Bhushans B (1997) Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater 45(11):4453–4461

    Article  Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863

    Article  Google Scholar 

  • McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(5):1300–1306

    Article  Google Scholar 

  • Morasch K, Bahr D (2007) An energy method to analyze through thickness thin film fracture during indentation. Thin Solid Films 515(6):3298–3304. doi:10.1016/j.tsf.2006.01.043

    Article  Google Scholar 

  • Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20(11):2217–2245

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564

    Article  Google Scholar 

  • Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564

    Article  Google Scholar 

  • Quinn GD, Bradt RC (2007) On the Vickers indentation fracture toughness test. J Am Ceram Soc 90(3):673–680. doi:10.1111/j.1551-2916.2006.01482.x

    Article  Google Scholar 

  • Ranade AN, Rama Krishna L, Li Z, Wang J, Korach CS, Chung Y-W (2012) Relationship between hardness and fracture toughness in Ti–\(TiB_2\) nanocomposite coatings. Surf Coat Technol 213:26–32. doi:10.1016/j.surfcoat.2012.10.007

    Article  Google Scholar 

  • Rouxel T, Ji H, Guin JP, Augereau F, Rufflé B (2010) Indentation deformation mechanism in glass: densification versus shear flow. J Appl Phys 107(9):094903. doi:10.1063/1.3407559

    Article  Google Scholar 

  • Schiffmann KI (2011) Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models. Philos Mag 91(7–9):1163–1178. doi:10.1080/14786435.2010.487984

    Article  Google Scholar 

  • Sriram K, Narasimhan R, Biswas SK (2003) A numerical fracture analysis of indentation into thin hard films on soft substrates. Eng Fract Mech 70:1323–1338

    Article  Google Scholar 

  • Steffensen S, Madsen ND, Jensen HM (2013) Numerical estimation of fracture toughness from indentation-induced circumferential cracking in thin films on ductile substrates. Int J Solids Struct 50:3406–3417

    Article  Google Scholar 

  • Steffensen S, Jensen HM (2014) Energy release rate for circular crack due to indentation in a brittle film on a ductile substrate. Eur J Mech A Solids 43:133–141

    Article  Google Scholar 

  • Steffensen S, Jensen HM (2015) Circular channel cracks during indentation in thin films on ductile substrates. Comput Mater Sci 98:263–270

    Article  Google Scholar 

  • Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentation on w and mo oriented single crystals: an stm study. Acta Metall Mater 41(10):2855–2865

    Article  Google Scholar 

  • Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, 3rd edn. Professional Engineering Publishing, London

    Book  Google Scholar 

  • Vanimisetti SK, Narasimhan R (2007) A numerical analysis of flexure induced cylindrical cracks during indentation of thin hard films on soft substrates. Thin Solid Films 515:3277–3282

    Article  Google Scholar 

  • Weppelmann E, Swain MV (1996) Investigation of stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films 286:111–121

    Article  Google Scholar 

  • Wiklund U, Bromark M, Larsson M, Hedenqvist P, Hogmark S (1997) Cracking resistance of thin hard coatings estimated by four-point bending. Surf Coat Technol 91(1–2):57–63. doi:10.1016/S0257-8972(96)03123-4

    Article  Google Scholar 

  • Zhang S, Sun D, Fu Y, Pei Y, De Hosson J (2005) Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surf Coat Technol 200(5–6):1530–1534. doi:10.1016/j.surfcoat.2005.08.080.38

    Article  Google Scholar 

  • Zhang S, Zhang X (2012) Toughness evaluation of hard coatings and thin films. Thin Solid Films 520:2375–2389

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Vestas Wind Systems A/S, Hedeager 44, 8200 Aarhus N, Denmark for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, N.D., Steffensen, S., Jensen, H.M. et al. Toughness measurement of thin films based on circumferential cracks induced at conical indentation. Int J Fract 193, 117–130 (2015). https://doi.org/10.1007/s10704-015-0022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0022-5

Keywords

Navigation