Skip to main content
Log in

In situ 3D Synchrotron Laminography Assessment of Edge Fracture in Dual-Phase Steels: Quantitative and Numerical Analysis

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The mechanical performance of automotive structures made of advanced high strength steels (AHSS) is often seen reduced by the presence of cut edges. An attempt is made to assess and quantify the initial damage state and the damage evolution during mechanical testing of a punched edge and a machined edge via a recently developed 3D imaging technique called synchrotron radiation computed laminography. This technique allows us to observe damage in regions of interest in thin sheet-like objects at micrometer resolution. In terms of new experimental mechanics, steel sheets having sizes and mechanical boundary conditions of engineering relevance can be tested for the first time with in situ 3D damage observation and quantification. It is found for the investigated DP600 steel that the fracture zone of the punched edge is rough and that needle-shape voids at the surface and in the bulk follow ferrite-martensite flow lines. During mechanical in situ testing the needle voids grow from the fracture zone surface and coalesce with the sheared zone. In contrast, during in situ mechanical testing of a machined edge the damage starts away from the edge (∼800μ m) where substantial necking has occurred. Three-dimensional image analysis was performed to quantify the initial damage and its evolution. These data can be used as input and validation data for micromechanical damage models. To interpret the experimental findings in terms of mechanical fields, combined surface digital image correlation and 3D finite element analysis were carried out using an elasto-plastic constitutive law of the investigated DP steel. The stress triaxiality and the accumulated plastic strain were calculated in order to understand the influence of the edge profile and the hardening of the cutting-affected zone on the mechanical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dalloz A, Besson J, Gourgues-Lorenzon A-F, Sturel T, Pineau A (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76(10):1411–1424

    Article  Google Scholar 

  2. Thomas DJ (2012) Effect of mechanical cut-edges on the fatigue and formability performance of advanced high-strength steels. J Fail Anal Preven 12(5):518–531

    Article  Google Scholar 

  3. Lara A, Picas I, Casellas D (2013) Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J Mater Proc Technol 213:1908–1919

    Article  Google Scholar 

  4. Mazinani M, Poole WJ (2007) Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mat Trans A 38(2):328–339

    Article  Google Scholar 

  5. Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by x-ray microtomography. Acta Mater 56(18):4954–4964

    Article  Google Scholar 

  6. Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scr Mater 63(10):973–976

    Article  Google Scholar 

  7. Avramovic-Cingara G, Saleh ChAR, Jain MK, Wilkinson DS (2009) Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans 40(13):3117–3127

    Article  Google Scholar 

  8. Kadkhodapour J, Butz A, Ziaei Rad S (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59(7):2575–2588

    Article  Google Scholar 

  9. Azuma M, Goutianos S, Hansen N, Winther G, Huang X (2012) Effect of hardness of martensite and ferrite on void formation in dual phase steel. Mater Sci Technol 28(9–10):1092–1100

    Article  Google Scholar 

  10. Ramazani A, Schwedt A, Aretz A, Prahl U, Bleck W (2013) Characterization and modelling of failure initiation in dpsteel. Comput Mater Sci 75:35–44

    Article  Google Scholar 

  11. Park In-Gyu, Thompson Anthony W (1988) Ductile fracture in spheroidized 1520 steel. Acta Metall 36 (7):1653–1664

    Article  Google Scholar 

  12. Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS (2009) Effect of martensite distribution on damage behaviour in dp600 dual phase steels. Mater Sci Eng 516:7–16

    Article  Google Scholar 

  13. Landron C, Bouaziz O, Maire E, Adrien J et al (2013) Experimental investigation of void coalescence in a dual phase steel using x-ray tomography. Acta Mater 61(18):6821–6829

    Article  Google Scholar 

  14. Brown M, Embury D (1973) A model of ductile fracture in two-phase materials. In: The 3rd international conference on strength of metals and alloys, London, pp 164–169

  15. Thomason PF (1990) Ductile fracture of metals. Pergamon Press

  16. Argon AS, Im J, Safoglu R (1975) Cavity formation from inclusions in ductile fracture. Metall Trans 6 (4):825–837

    Article  Google Scholar 

  17. Beremin FM (1981) Cavity formation from inclusions in ductile fracture of a508 steel. Metall Trans A 12 (5):723–731

    Article  Google Scholar 

  18. Chu CC, Needleman A. (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256

    Article  Google Scholar 

  19. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids 17(3):201–217

    Article  Google Scholar 

  20. Huang Y (1991) Accurate dilatation rates for spherical voids in triaxial stress fields. J Appl Mech 58 (4):1084–1086

    Article  Google Scholar 

  21. Gurson AL (1975) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Yield criteria and flow rules for porous ductile media. Technical report (Brown University. Division of Engineering). Division of Engineering, Brown University

  22. Bettaieb MB, Lemoine X, Bouaziz O, Habraken AM, DuchÃne L (2011) Numerical modeling of damage evolution of dp steels on the basis of x-ray tomography measurements. Mech Mater 43(3):139–156

    Article  Google Scholar 

  23. Fansi Joseph, Balan Tudor, Lemoine Xavier, Maire Eric, Landron Caroline, Bouaziz Olivier, Bettaieb Mohamed Ben, Habraken Anne Marie (2013) Numerical investigation and experimental validation of physically based advanced {GTN} model for {DP} steels. Mater Sci Eng A 569:1–12

    Article  Google Scholar 

  24. Besson J (2010) Continuum models of ductile fracture: a review. International Journal of Damage Mechanics 19(1):3–52

    Article  Google Scholar 

  25. Pyttel T, John R, Hoogen M (2000) A finite element based model for the description of aluminium sheet blanking. Int J Mach Tool Manuf 40(14):1993–2002

    Article  Google Scholar 

  26. Chen ZH, Tang CY, Lee TC (2004) An investigation of tearing failure in fine-blanking process using coupled thermo-mechanical method. Int J Mach Tools Manuf 44:155–165

    Article  Google Scholar 

  27. Wu Xin, Bahmanpour H, Schmid K (2012) Characterization of mechanically sheared edges of dual phase steels. J Mater Proc Technol 212(6):1209–1224

    Article  Google Scholar 

  28. So H, FaAmann D, Hoffmann H, Golle R, Schaper M (2012) An investigation of the blanking process of the quenchable boron alloyed steel 22mnb5 before and after hot stamping process. J Mater Proc Technol 212(2):437–449

    Article  Google Scholar 

  29. Lee TC, Chan LC, Wu BJ (1995) Straining behaviour in blanking process - fine blanking vs conventional blanking. J Mater Proc Technol 48:105–111

    Article  Google Scholar 

  30. Hambli R (2001) Comparison between lemaitre and gurson damage models in crack growth simulation during blanking process. Int J Mech Sci 43(12):2769–2790

    Article  MATH  Google Scholar 

  31. Ridha Hambli (2002) Prediction of burr height formation in blanking processes using neural network. Int J Mech Sci 44(10):2089–2102

    Article  MATH  Google Scholar 

  32. Hilditch TB, Hodgson PD (2005) Development of the sheared edge in the trimming of steel and light metal sheet: Part 1, experimental observations. J Mater Proc Technol 169(2):184–191

    Article  Google Scholar 

  33. Mori K, Saito S, Maki S (2008) Warm and hot punching of ultra high strength steel sheet. {CIRP} Ann Manuf Technol 57(1):321–324

    Article  Google Scholar 

  34. So H, Hoffmann H, Golle R (2009) Blanking of press hardened ultra high strength steel. In: Proceedings of 2nd international conference on hot sheet metal forming of high-performance steel. Luleo, Sweden, pp 137–145

  35. Sartkulvanich P, Kroenauer B, Golle R, Konieczny A, Altan T (2010) Finite element analysis of the effect of blanked edge quality upon stretch flanging of ahss. CIRP Ann Manuf Technol 59(1):279–282

    Article  Google Scholar 

  36. Mori K (2012) Smart hot stamping of ultra-high strength steel parts. Trans Nonferrous Met Soc China 22, Supplement 2:s496–s503

    Article  Google Scholar 

  37. Mori K, Abe Y, Kidoma Y, Kadarno P (2013) Slight clearance punching of ultra-high strength steel sheets using punch having small round edge. Int J Mach Tool Manuf 65(0):41–46

    Article  Google Scholar 

  38. Taupin E, Breitling J, Wu WT, Altan T (1996) Material fracture and burr formation in blanking results of {FEM} simulations and comparison with experiments. J Mater Proc Technol 59(1–2):68–78

    Article  Google Scholar 

  39. Breitling J, Chernauskas V, Taupin E, Altan T (1997) Precision shearing of billetsspecial equipment and process simulation. J Mater Proc Technol 71(1):119–125

    Article  Google Scholar 

  40. Goijaerts AM, Stegeman YW, Govaert LE, Brokken D, Brekelmans WAM, Baaijens FPT (2000) Can a new experimental and numerical study improve metal blanking? J Mater Proc Technol 103(1):44–50

    Article  Google Scholar 

  41. Goijaerts AM, Govaert LE, Baaijens FPT (2001) Evaluation of ductile fracture models for different metals in blanking. J Mater Process Technol 110(3):312–323

    Article  Google Scholar 

  42. Kim JH, Lee MG, Kim D, Matlock DK, Wagoner RH (2010) Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique. Mater Sci Eng A 527 (27–28):7353–7363

    Article  Google Scholar 

  43. Jha G, Das S, Lodh A, Haldar A (2012) Development of hot rolled steel sheet with 600 mpa uts for automotive wheel application. Mater Sci Eng A 552:457–463

    Article  Google Scholar 

  44. Taylor MD, Choi KS, Sun X, Matlock DK, Packard CE, Xu L, Barlat F (2014) Correlations between nanoindentation hardness and macroscopic mechanical properties in {DP980} steels. Mater Sci Eng A

  45. Wang Kai, Luo Meng, Wierzbicki Tomasz (2014) Experiments and modeling of edge fracture for an ahss sheet. Int J Fract 187(2):245–268

    Article  Google Scholar 

  46. Hasegawa K., Kawamura K, Urabe T, Hosoya Y (2004) Effects of microstructure on stretch-flange-formability of 980 mpa grade cold-rolled ultra high strength steel sheets. ISIJ Int 44(3):603–609

    Article  Google Scholar 

  47. Bouaziz O, Douchamps S, Durrenberger L, Bui-Van A (2010) The double bending test: a promising new way for an optimal characterization of cut-edges ductility. In: International deep-drawing research group, London, pp 164–169

  48. Levy BS, Gibbs M, Tyne CJ (2013) Failure during sheared edge stretching of dual-phase steels. Metall Mat Trans A 44(8):3635–3648

    Article  Google Scholar 

  49. Levy B, Van Tyne C (2012) Effect of a strain-hardening rate at uniform elongation on sheared edge stretching. J Mater Eng Perform:1–8

  50. Levy B, Van Tyne C (2011) Review of the shearing process for sheet steels and its effect on sheared-edge stretching. J Mater Eng Perform:1–9

  51. Gammage JJ, Wilkinson DS, Embury JD, Maire E (2005) Damage studies in heterogeneous aluminium alloys using x-ray tomography. Philos Mag 85(26–27):3191–3206

  52. Maire E, Bordreuil C, Babout L, Boyer J-C (2005) Damage initiation and growth in metals. comparison between modelling and tomography experiments. Journal of the Mechanics and Physics of Solids 53(11):2411–2434

    Article  MATH  Google Scholar 

  53. Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminium alloys using in situ tensile tests in x-ray tomography. Eng Fract Mech 78(15):2679–2690

    Article  Google Scholar 

  54. Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using x-ray microtomography characterization of damage in dual phase steels. Acta Mater 59(20):7564–7573

    Article  Google Scholar 

  55. Helfen L, Baumbach T, Mikulik P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86 (7):071915–071915–3

    Article  Google Scholar 

  56. Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Status Solidi A 204:2760–2765

    Article  Google Scholar 

  57. Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82(6)

  58. Xu F, Helfen L, Moffat AJ, Johnson G, Sinclair I, Baumbach T (2010) Synchrotron radiation computed laminography for polymer composite failure studies. J Synchrotron Radiat 17(2):222–226

    Article  Google Scholar 

  59. Bull DJ, Helfen L, Sinclair I, Spearing SM, Baumbach T (2013) A synthesis of multi-scale 3d x-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos Sci Technol 75:55–61

    Article  Google Scholar 

  60. Morgeneyer TF, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography. Scr Mater 65(11):1010–1013

    Article  Google Scholar 

  61. Shen Y, Morgeneyer TF, Garnier J, Allais L, Helfen L, Crépin J (2013) Three-dimensional quantitative in situ study of crack initiation and propagation in {AA6061} aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater 61(7):2571–2582

    Article  Google Scholar 

  62. Ueda T, Helfen L, Morgeneyer TF (2014) In-situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with gtn-type simulations. Accepted for publication in Acta Materialia

  63. Morgeneyer TF, Helfen L, Mubarak H, Hild F (2013) 3d digitavolume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp Mech 53(4):543–556

    Article  Google Scholar 

  64. Tong W, Tao H, Jiang XQ, Zhang NA, Marya MP, Hector LG, Gayden XHQ (2005) Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures. Metall Mater Trans A Physical metallurgy and materials science 36A(10):2651–2669

    Article  Google Scholar 

  65. Le Jolu T, Morgeneyer TF, Denquin A, Sennour M, Laurent A, Besson J, Gourgues-Lorenzon A-F (2014) Microstructural characterization of internal welding defects and their effect on the plastic behavior of FSW joints of AA2198 Al-Cu-Li alloy. Metall Mater Trans A 45:5531–5544

    Article  Google Scholar 

  66. Douissard P A, Cecilia A, Rochet X, Chapel X, Martin T, van de Kamp T, Helfen L, Baumbach T, Luquot L, Xiao X, Meinhardt J, Rack A (2012) A versatile indirect detector design for hard x-ray microimaging. J Instrum 7(09):P09016

    Article  Google Scholar 

  67. Myagotin A, Voropaev A, Helfen L, Hanschke D, Baumbach T (2013) Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters. IEEE Trans Image Process 22(12):5348–5361

    Article  Google Scholar 

  68. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imagej. Biophoton Int 11(7):36–42

    Google Scholar 

  69. Landron C, Maire E, Adrien J, Bouaziz O, Di Michiel M, Cloetens P, Suhonen H (2011) Resolution effect on the study of ductile damage using synchrotron x-ray tomography

  70. Morgeneyer TF, Besson J, Proudhon H, Starink MJ, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in {AA2139} al-alloy sheet. Acta Mater 57(13):3902–3915

    Article  Google Scholar 

  71. Hild F (2002) A software for displacement field measurements by digital image correlation. LMT Cachan, report 252

  72. Besson J., Cailletaud G., Chaboche, Forest SJ-L (2010) Non linear mechanics of materials. Springer

  73. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24 (10):1642–1693

    Article  MATH  Google Scholar 

  74. Rèche D, Besson J, Sturel T, Lemoine X, Gourgues-Lorenzon AF (2012) Analysis of the air-bending test using finite-element simulation: application to steel sheets. Int J Mech Sci 57(1):43–53

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ArcelorMittal Global R&D for financial support and material supply and Astrid Perlade for helpful discussions. The authors also acknowledge the ESRF for the provision of synchrotron radiation at ID19 beam-line through the MA1631 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kahziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahziz, M., Morgeneyer, T.F., Mazière, M. et al. In situ 3D Synchrotron Laminography Assessment of Edge Fracture in Dual-Phase Steels: Quantitative and Numerical Analysis. Exp Mech 56, 177–195 (2016). https://doi.org/10.1007/s11340-015-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0076-3

Keywords

Navigation