Skip to main content
Log in

Impact of Experimental Uncertainties on the Identification of Mechanical Material Properties using DIC

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with an in-depth study of the interactions between full-field measurements errors and material identification. It is a further step in a research plan that aims to create a simulation procedure of actual experiments, with the final goal of using the simulator to optimise the test set-up in terms of specimen shape, measurement technique, applied load etc. In particular,here, Digital Image Correlation (DIC) is used as a full-field technique to obtain strain and displacement fields. These maps are used as input in an inverse methodology as, for instance, the virtual fields method (VFM) to obtain the material parameters introducing uncertainties in the characterization. The purpose of this contribution is to bridge the gap between experiments and simulations, in order to obtain predictions as close as possible to reality in terms of identification error. That will be used, as final goal of the general study, to optimize numerically a test set-up configuration, giving a priori the best parameters to use to experimentally identify a specimen. In the present contribute, the operating procedure is to perform real experiments and then to reproduce them numerically. Experimental uncertainties such as noise, lighting conditions, in-plane and out-of-plane motions are treated separately and introduced in the simulator. As such, their impact on the identified material properties can be unambiguously investigated. Here, focus is on the elastic properties of aluminium specimens, i.e. the Young’s modulus and the Poisson ratio and their specific variances due to the aforementioned errors. The simulator predicts reality to a large extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Compos Part A-Appl S 35:751–761

    Article  Google Scholar 

  2. Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  3. Pierron F, Grédiac M (2012) The virtual fields Method. Springer

  4. Sutton M.A., Orteu J-J, Schreier HW (2009) Image Correlation for Shape, Motion and Deformation Measurements. Springer

  5. Piro J-L, Grédiac M (2004) Producing and transferring low-spatial-frequency grids fo measuring displacement fields with moiré and grid methods. Exp Tech 28:23–26

    Article  Google Scholar 

  6. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42:233–253

    Article  Google Scholar 

  7. Lecompte D, Cooreman S, Coppieters S, Vantomme H, andand Sol J, Debruyne D (2009) Parameter identification for anisotropic plasticity model using digital image correlation, Comparison Between Uni-axial Bi-axial Tensile Test. Eur J Comput Mech 18:393–418

    Google Scholar 

  8. Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 48(4):421–433

    Article  Google Scholar 

  9. Grédiac M, Vautrin A (1990) A new method for determination of bending rigidities of thin anisotropic plates. J Appl Mech 57:964–968

    Article  Google Scholar 

  10. Moulart R, Avril S, Pierron F (2006) Identification of the through-thickness rigidities of a thick laminated composite tube. Compos Part A-Appl S 37:326–336

    Article  Google Scholar 

  11. Giraudeau A, Pierron F (2005) Identification of stiffness and damping properties of thin isotropic vibrating plates using the virtual fields method. theory and simulations. J Sound Vib 284:757–781

    Article  Google Scholar 

  12. Rossi M, Pierron F (2012) On the use of simulated experiments in designing test from material characterization from full-field measurement. Int J Solids Struct 49:420–435

    Article  Google Scholar 

  13. Lava P, Rossi M, Badaloni M, Debruyne D, Pierron F (2013) Digital image correlation and virtual fields to design an optimized experimental setup for material identification. In: Photomechanics 2013

  14. Wang Y, Lava P, Coppieters S, De Strycker P, Van Houtte P, Debruyne D (2012) Investigation of the uncertainty of DIC under heterogeneous strain states with numerical test. Strain 48(6):453–462

    Article  Google Scholar 

  15. Bornet M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370

    Article  Google Scholar 

  16. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt Lasers Eng 47:747–753

    Article  Google Scholar 

  17. Lava P, Cooreman S, Debruyne D (2010) Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Opt Lasers Eng 48:457–468

    Article  Google Scholar 

  18. Rossi M, Pierron F, Lava P, Debruyne D, Sasso M (2015) Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM. Strain, doi:10.1111/str12134

  19. Wittewrongel L, Lava P, Lomov S, Debruyne D (2014) A self adaptive global digital image correlation algorithm. Experimental Mechanics, doi:10.1007/s11340-014-9946-3

  20. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44:1132–1145

    Article  Google Scholar 

  21. Hijazi A, Friedl A, Kahler CJ (2011) Influence of camera’s optical axis non-perpendicularity on measurement accuracy of two-dimensional digital image correlation. Jourdan J Mech Ind Eng 4:373–382

    Google Scholar 

  22. Lava P, Coppieters S, Wang Y, Van Houtte P, Debruyne D (2012) Error estimation in measuring strain fields with dic on planar sheet metal specimens with a non-perpendicular camera alignement. Opt Lasers Eng 49:57–65

    Article  Google Scholar 

  23. www.matchID.org. matchID 2D and 3D software

  24. Reu PI (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51:443–452

    Article  Google Scholar 

  25. Grediac M, Sur F (2013) Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method. Strain 50:1–27

    Article  Google Scholar 

  26. Surrel Y (1999) Photomecanics, chapter Fringe analysis. Springer Berlin, pp 57–104

  27. Chalal H, Avril S, Pierron F, Meraghni F (2006) Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Compos Part A-Appl S 37(2):315–325

    Article  Google Scholar 

  28. Sur F, Grédiac M (2014) Sensor noise modeling by stacking pseudo-periodic grid images affected by vibrations. IEEE Signal Process Lett 21(4):432–436

    Article  Google Scholar 

  29. Réthouré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int Numer Methods Eng 84(6):631–660

    Article  Google Scholar 

  30. Gras R, Leclerc H, Hild F, Roux S, Schneider J Identification of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and recularization. Int J Solid Struct 201:2–16

  31. Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu J-J (2008) The effect of out-of-plane motion on 2d and 3d digital image correlation measurements. Opt Lasers Eng 46:746–757

    Article  Google Scholar 

  32. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49:5501–5509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Badaloni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaloni, M., Rossi, M., Chiappini, G. et al. Impact of Experimental Uncertainties on the Identification of Mechanical Material Properties using DIC. Exp Mech 55, 1411–1426 (2015). https://doi.org/10.1007/s11340-015-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0039-8

Keywords

Navigation