Skip to main content
Log in

Computation of Full-field Strains Using Principal Component Analysis

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The primary output from several full-field deformation measurement techniques, e.g., Digital Image Correlation (DIC), is the displacement vector at a dense grid of points covering the area of interest. Since such displacement data inherently contain noise, they are usually smoothed first and then differentiated to obtain strains. Another common approach is to use finite-element shape functions for the strains and compute them by treating the measured displacements as nodal displacements. In this paper, we propose a novel method for strain calculation from full-field data, based on the multivariate analysis technique of Principal Component Analysis (PCA) using which we first obtain the singular values and singular vectors for each component of the displacement field. By choosing only the dominant singular values and their corresponding singular vectors, we show that the dimensionality of the displacement data is sharply reduced and a significant portion of the noise is eliminated. Moreover, the shapes of the dominant singular vectors offer physical insight into dominant deformation patterns. We demonstrate the accuracy of the proposed technique by applying it to two cases each of homogeneous and inhomogeneous strain fields and show that in all cases the proposed method yields excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, New York

  2. Jacquot P (2008) Speckle interferometry: a review of the principal methods in use for experimental mechanics applications. Strain 44:57–69

    Article  Google Scholar 

  3. Durelli AJ (1983) The moiré method-a review—discussion. Exp Mech 23:446–449

    Article  Google Scholar 

  4. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39:2915–2921

    Article  Google Scholar 

  5. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44:1132–1145

    Article  Google Scholar 

  6. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42:303–310

    Article  Google Scholar 

  7. Lu H, Cary PD (2000) Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp Mech 40:393–400

    Article  Google Scholar 

  8. Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16:7037–7048

    Article  Google Scholar 

  9. Baker S, Matthew I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56:221–255

    Article  Google Scholar 

  10. Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46:185–196

    Article  Google Scholar 

  11. Rowlands RE, Winters KD, Jensen JA (1978) Full-field numerical differentiation. J Strain Anal 13:177–183

    Article  Google Scholar 

  12. Rowlands RE, Jensen JA, Winters KD (1978) Differentiation along arbitrary orientations. Exp Mech 18:81–86

    Article  Google Scholar 

  13. Sollid JE, Stetson KA (1978) Strains from holographic data. Exp Mech 18:208–214

    Article  Google Scholar 

  14. Berghaus DG, Cannon JP (1973) Obtaining derivatives from experimental data using smoothed-spline functions. Exp Mech 13:38–42

    Article  Google Scholar 

  15. Feng Z, Rowlands RE (1987) Continuous full-field representation and differentiation of three-dimensional experimental vector data. Comput Struct 26:979–990

    Article  Google Scholar 

  16. Sciammarella CA, Chawla SK (1978) A lens holographic-moiré technique to obtain components of displacements and derivatives. Exp Mech 18:373–381

    Article  Google Scholar 

  17. McKelvie J (1998) Moiré strain analysis: an introduction, review and critique, including related techniques and future potential. J Strain Anal Eng Des 33:137–151

    Article  Google Scholar 

  18. Patorski K, Kujawinska M (1985) Optical differentiation of displacement patterns using moire interferometry. Appl Opt 24:3041–3048

    Article  Google Scholar 

  19. Sutton MA, Turner JL, Bruck HA, Chae TA (1991) Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp Mech 31:168–177

    Article  Google Scholar 

  20. Craven P, Wahba G (1979) Smoothing noisy data with spline functions-estimating the correct degree of smoothing by the method of generalized cross-validation. Numer Math 31:377–403

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang CCB, Deng JM, Ateshian GA, Hung CT (2002) An automated approach for direct measurement of two dimensional strain distributions within articular cartilage under unconfined compression. J Biomech Eng 124:557–567

    Article  Google Scholar 

  22. Meng LB, Jin GC, Yao XF (2007) Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Opt Lasers Eng 45:57–63

    Article  Google Scholar 

  23. Geers MGD, De Borst R, Brekelmans WAM (1996) Computing strain fields from discrete displacement fields in 2-D solids. Int J Solids Struct 33:4293–4307

    Article  MATH  Google Scholar 

  24. Zhao J, Zeng P, Pan B, Lei L, Du H, He W, Liu Y, Xu Y (2012) Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation. Opt Lasers Eng 50:1662–1671

    Article  Google Scholar 

  25. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  26. Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46:33601–33610

    Article  Google Scholar 

  27. Avril S, Feissel P, Pierron F, Villon P (2008) Estimation of the strain field from full-field displacement noisy data. Eur J Comput Mech 17:857–868

    MATH  Google Scholar 

  28. Avril S, Feissel P, Pierron F, Villon P (2010) Comparison of two approaches for differentiating full-field data in solid mechanics. Meas Sci Technol 21(015703):11

    Google Scholar 

  29. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47:865–874

    Article  Google Scholar 

  30. Cofaru C, Philips W, Paepegem WV (2010) Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation. Appl Opt 49:6472–6484

    Article  Google Scholar 

  31. Truyols GV, Schoenmakers PJ (2006) Automatic selection of optimal Savitzky-Golay smoothing. Anal Chem 78:4598–4608

    Article  Google Scholar 

  32. Jakubowska M, Kubiak WW (2004) Adaptive-degree polynomial filter for voltammetric signals. Anal Chim Acta 512:241–250

    Article  Google Scholar 

  33. Patki AS, Patterson EA (2011) Decomposing strain maps using Fourier-Zernike shape descriptors. Exp Mech 1:1–13

    Google Scholar 

  34. Patki AS, Patterson EA (2012) Damage assessment of fibre reinforced composites using shape descriptors. J Strain Anal 47:244–253

    Article  Google Scholar 

  35. Sebastian C, Patterson E, Ostberg D (2011) Comparison of numerical and experimental strain measurements of a composite panel using image decomposition. Appl Mech Mater 70:63–68

    Article  Google Scholar 

  36. Wang W, Mottershead JE, Sebastian CM, Patterson EA (2011) Image processing of full-field strain data and its use in model updating. J Phys Conf Ser 305(012011):10

    Google Scholar 

  37. Wang W, Mottershead JE, Mares C (2009) Vibration mode shape recognition using the Zernike moment descriptor. In: Conference proceedings of the society for experimental mechanics series

  38. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

  39. Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12:103–108

    Article  Google Scholar 

  40. de Lima C, Alcaim A, Apolinario JA Jr (2002) On the use of PCA in GMM and AR-vector models for text independent speaker verification. In: 14th international conference on digital signal processing proceedings (Cat No. 02TH8628), vol 2, pp 595–598

  41. Narasimhan S, Shah SL (2008) Model identification and error covariance matrix estimation from noisy data using PCA. Control Eng Pract 16:146–155

    Article  Google Scholar 

  42. Tavakol S, Dennick R, Tavakol M (2011) Psychometric properties and confirmatory factor analysis of the Jefferson scale of physician empathy. BMC Med Educ 11 doi:10.1186/1472-6920-11-54

  43. Oja E (1982) A simplified neuron model as a principal component analyzer. J Math Biol 15:267–273

    Article  MATH  MathSciNet  Google Scholar 

  44. Cadima J, Jolliffe I (2009) On relationships between uncentered and column-centered principal component analysis. Pak J Stat 25:473–503

    MathSciNet  Google Scholar 

  45. Noy-Meir I (1973) Data Transformations in Ecological Ordination: I. Some advantages of non-centering. J Ecol 61:329–341

    Article  Google Scholar 

  46. Feoli E (1977) On the resolving power of principal component analysis in plant community ordination. Vegetatio 33:119– 125

    Google Scholar 

  47. Alter O, Golub GH (2006) Singular value decomposition of genome-scale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening. Proc Natl Acad Sci 103:11828–11833

    Article  Google Scholar 

  48. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

  49. Reu PL (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51:443–452

    Article  Google Scholar 

  50. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing. I. Theory. IEEE Trans Signal Process 41:821–833

    Article  MATH  Google Scholar 

  51. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing. II. Efficiency design and applications. IEEE Trans Signal Process 41:834–848

    Article  MATH  Google Scholar 

  52. Saravanan U, Rajagopal KR (2005) Inflation, extension, torsion and shearing of an inhomogeneous compressible elastic right circular annular cylinder. Math Mech Solids 10:603– 650

    Article  MATH  MathSciNet  Google Scholar 

  53. Chartrand R (2011) Numerical differentiation of noisy nonsmooth data. ISRN Appl Math. doi:10.5402/2011/164564

  54. Fearnhead P (2005) Exact bayesian curve fitting and signal segmentation. IEEE Trans Signal Process 53:2160–2166

    Article  MathSciNet  Google Scholar 

  55. Feng Z, Rowlands RE (1991) Smoothing finite-element and experimental hybrid technique for stress analyzing composites. Comput Struct 39:631–639

    Article  Google Scholar 

  56. Correlated Solutions Inc. (2010) Vic-2D image correlation program. http://www.correlatedsolutions.com

  57. Mura T (1987) Micromechanics of defects in solids. Springer, Netherlands

  58. Bower AF (2010) Applied mechanics of solids. CRC Press, Boca Raton

Download references

Acknowledgments

The authors would like to thank Prof. Shankar Narasimhan for helpful discussions on PCA and its applications. The authors would also like to thank Prof. Fabrice Pierron for his insightful comments and the two anonymous reviewers for their thorough detailed reviews of the manuscript and excellent suggestions. SJS would also like to thank the Indian Institute of Technology, Madras for financial support through a seed grant, which enabled this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Subramanian.

Appendices

Appendix A: Finite Displacement and Strain in an Incompressible Hollow Cylinder Undergoing Inflation

An extensive discussion of a similar problem (Fig. 11) is found in Saravanan and Rajagopal [52]. Working in cylindrical polar coordinates, and using upper-case letters for the coordinates in the reference configuration and lower-case for those in the current configuration respectively, we have

$$ \begin{aligned} r & = R + f(R) \\ \theta & = \mathit{\Theta} \\ z & = Z \\ \end{aligned} $$
(12)

where f(R) is the radial displacement function to be determined. The deformation gradient tensor, F, for this deformation is

$$ \mathbf{F} = \begin{aligned} \frac{df}{dR} &\; 0 & 0 \\ 0 &\; \frac{r}{R} & 0 \\ 0 &\; 0 & 1 \end{aligned} $$
(13)

As the material is incompressible, J = detF = 1, thus yielding function f in terms of R.

$$ f(R) = \sqrt{R^2+r_{o}^2-R_{o}^{2}}, $$
(14)

where R o and r o are the outer radius of the cylinder before and after inflation respectively.

Thus, the displacement in the radial direction can be written as

$$ U_{R} = \sqrt{R^2+r_{o}^2-R_{o}^{2}} - R $$
(15)

The displacement in X and Y directions can be expressed as

$$ \begin{aligned} U_{X} = U_{R} \cos \phi \\ U_{Y} = U_{R} \sin \phi \\ \end{aligned} $$
(16)

where, ϕ is the angle between radial direction and X direction. The displacement matrices U and V are assembled by computing U X and U Y from equation (16) at grid points inside the square region of interest (Fig. 11). The Green-Lagrange strain tensor E, defined as

$$ \mathbf{E} = \frac{1}{2}[\mathbf{F}^{T}\mathbf{F}-\mathbf{I}] $$
(17)

is then obtained as

$$ \mathbf{E} = \frac{1}{2} \left[\begin{aligned} \left(\frac{R_{o}^2-r_{o}^{2}}{R^2+r_{o}^2-R_{o}^{2}}\right)^{2} & 0 & 0 \\ 0 & \left(\frac{r_{o}^2-R_{o}^{2}}{R^{2}}\right)^{2} & 0 \\ 0 & 0 & 0 \end{aligned} \right]$$
(18)

The strain components in Cartesian basis are then readily obtained as

$$ \begin{aligned} E_{XX} &= E_{RR}\cos^{2}\phi + E_{\mathit{\Theta \Theta}}\sin^{2}\phi \\ E_{YY} &= E_{RR}\sin^{2}\phi + E_{\mathit{\Theta \Theta}}\cos^{2}\phi \\ E_{XY} &= E_{RR}\cos \phi \sin \phi - E_{\mathit{\Theta \Theta}}\sin \phi \cos \phi \\ \end{aligned} $$
(19)

These equations are used to generate the ground-truth strain components over the region of interest.

Appendix B: Infinitesimal Displacement and Strain in a Spherical Isotropic Inclusion -Eshelby’s Solution [57]

Solution Inside Spherical Inclusion

The displacement, strain and stress inside the spherical inclusion are as follows [57, 58]:

$$ u_{i} = S_{ijkl}^{*}{\epsilon}^{T}_{kl}x_j $$
(20)
$$ \epsilon_{ij} = S_{ijkl}^{*} \epsilon_{kl}^T $$
(21)
$$ \sigma_{ij} \!=\! \frac{E}{(1\!+\!\nu)}\left[S_{ijkl}^* \epsilon_{kl}^T \!+\! \frac{\nu}{(1\!-\!2\nu)}\delta_{ij}S_{ppkl}^*\epsilon_{kl}^T\right] \!-\! p_{ij}^T $$
(22)

where \(S_{ijkl}^{*}\) is the Eshelby tensor. For a spherical inclusion, we obtain

$$ S_{1111}^{*} = S_{2222}^{*} = S_{3333}^{*} = \frac{7-5\nu}{15(1-\nu)} $$
(23)
$$ S_{1212}^{*} = S_{2323}^{*} = S_{3131}^{*} = \frac{4-5\nu}{15(1-\nu)} $$
(24)
$$ S_{1122}^{*} \,=\, S_{2233}^{*} \,=\, S_{3311}^{*} \,=\, S_{1133}^{*} \,=\, S_{3322}^{*} \,=\, \frac{5\nu-1}{15(1-\nu)}\\ $$
(25)

Additional terms of \( S_{ijkl}^{*}\) follow from symmetry i.e. \( S_{ijkl}^{*} = S_{jikl}^{*} = S_{ijlk}^{*} = S_{jilk}^{*}\), while the remaining terms are zero.

Solution Outside Spherical Inclusion

The displacement field outside the spherical inclusion in Cartesian basis is given by

$$\begin{array}{rcl} u_i \!=\! \frac{(1\!+\!\nu)a^3}{2(1\!-\!{\nu})E}\left[\frac{(2p_{ik}^T x_k \!+\! p_{kk}^T x_i)}{15R^5} \left(3a^2-5R^2\right)\right.\nonumber\\ &&\left.{\kern5pc} \!+\! \frac{p_{jk}^T x_j x_k x_i}{R^7} \left(R^2\!-\!a^2\right) \!+\! \frac{4(1\!-\!{\nu})p_{ik}^Tx_k}{3R^3}\right] \end{array}$$
(26)

where \(R = \sqrt {x_kx_{k}}\) and a is the radius of spherical inclusion. The stress fields in Cartesian basis are

$$\begin{array}{@{}rcl@{}} &&\sigma_{ij} = \frac{{a}^{3}}{2(1-\nu)R^{3}}\left[\frac{p_{ij}^{T}}{15}\left(10(1-2{\nu}) + \frac{6{a}^{2}}{R^{2}}\right)\right.\\ &&{\kern6.8pc}+ \frac{p_{ik}^Tx_kx_{j} + p_{jk}^Tx_kx_{i}}{R^{2}}\left(2\nu - 2\frac{{a}^{2}}{R^{2}}\right) \\ &&{\kern6.8pc} + \frac{{\delta}_{ij}p_{kk}^{T}}{15} + \left(\frac{3{a}^{2}}{R^{2}} - 5(1-2{\nu}) \right) \\ &&{\kern6.8pc}+ \frac{{\delta}_{ij}p_{kl}^Tx_{k} x_{l}}{R^{2}}\left((1-2\nu) - \frac{{a}^{2}}{R^{2}}\right) \\ &&{\kern6.8pc}- \frac{x_ix_jp_{kl}^Tx_kx_{l}}{R^{4}}\left(5-\frac{7{a}^{2}}{R^{2}}\right)\\ &&{\kern6.8pc}+ \left. \frac{x_ix_jp_{kk}^{T}}{R^{2}}\left(1-\frac{{a}^{2}}{R^{2}}\right)\right]\\ \end{array} $$
(27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grama, S.N., Subramanian, S.J. Computation of Full-field Strains Using Principal Component Analysis. Exp Mech 54, 913–933 (2014). https://doi.org/10.1007/s11340-013-9800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9800-z

Keywords

Navigation