Skip to main content
Log in

Microstructure and Mechanical Anisotropy of Crab Cancer Magister Exoskeletons

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this study, the microstructure and mechanical anisotropy of a crab Cancer magister exoskeleton – including both the claw and body shell - were studied by using systematic scanning electron microscopy, energy dispersive x-ray analysis, and nanoindentation. The exoskeleton was observed to have a layered microstructure on the cross sections with hierarchically stacked chitin-protein fibrous planes, and porous structures on the in-plane sections. The elastic modulus and hardness decrease with increasing distance from the exoskeleton surface. When comparing the same cuticle layer, higher mechanical properties were measured in the claw than the body shell. A pronounced mechanical anisotropy is observed between the in-plane and cross-section directions – higher modulus and hardness on the in-plane sections than the cross sections, with the exception for the claw endocuticle which shows significantly higher mechanical properties on the cross-sections. Possible mechanisms leading to the observed microstructural and mechanical anisotropy were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Luz GM, Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans R Soc A 367:1587–1605

    Article  Google Scholar 

  2. Meyers MA, Lin AYM, Seki Y, Chen PY, Kad BK, Bodde S (2006) Struct Biol Compos Jom 58:35–41

    Google Scholar 

  3. Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, DiMasi E, Kisailus D (2012) The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336:1275–1280

    Article  Google Scholar 

  4. Currey JD (1977) Mechanical-properties of mother of pearl in tension. Proc R Soc B 196:443–463

    Article  Google Scholar 

  5. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc B 234:415–440

    Article  Google Scholar 

  6. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485–2493

    Article  Google Scholar 

  7. Barthelat F, Espinosa HD (2007) An experimental investigation of deformation and fracture of nacre–mother of pearl. Exp Mech 47:311–324

    Article  Google Scholar 

  8. Meyers MA, Lin AYM, Chen PY, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 1:76–85

    Article  Google Scholar 

  9. Katti KS, Mohanty B, Katti DR (2006) Nanomechanical properties of nacre. J Mater Res 21:1237–1242

    Article  Google Scholar 

  10. Li X, Chang WC, Chao YJ, Wang R, Chang M (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4:613–617

    Article  Google Scholar 

  11. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55:306–337

    Article  Google Scholar 

  12. Katti DR, Katti KS, Sopp JM, Sarikaya M (2001) 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comput Theor Polym Sci 11:397–404

    Article  Google Scholar 

  13. Roer R, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Amer Zool 24:893–909

    Google Scholar 

  14. Chen PY, Lin AYM, McKittrick J, Meyers MA (2008) Structure and mechanical properties of crab exoskeletons. Acta Biomater 4:587–596

    Article  Google Scholar 

  15. Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical-properties of a crab shell. Comp Biochem Physiol 50:551–554

    Article  Google Scholar 

  16. Joffe I, Hepburn HR, Nelson KJ, Green N (1975) Mechanical-properties of a crustacean exoskeleton. Comp Biochem Physiol 50:545–549

    Article  Google Scholar 

  17. Taylor JRA, Hebrank J, Kier WM (2007) Mechanical properties of the rigid and hydrostatic skeletons of molting blue crabs, Callinectes sapidus Rathbun. J Exp Biol 210:4272–4278

    Article  Google Scholar 

  18. Melnick CA, Chen Z, Mecholsky JJ (1996) Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. J Mater Res 11:2903–2907

    Article  Google Scholar 

  19. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292

    Article  Google Scholar 

  20. Sachs C, Fabritius H, Raabe D (2006) Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 21:1987–1995

    Article  Google Scholar 

  21. Cribb BW, Rathmell A, Charters R, Rasch R, Huang H, Tibbetts IR (2009) Structure, composition and properties of naturally occurring non-calcified crustacean cuticle. Arthropod Struct Dev 38:173–178

    Article  Google Scholar 

  22. Nikolov S, Petrov M, Lymperakis L, Friak M, Sachs C, Fabritius H, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22:519–526

    Article  Google Scholar 

  23. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  24. Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O (2008) Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv Funct Mater 18:3307–3314

    Article  Google Scholar 

  25. Cheng L, Wang L, Karlsson AM (2008) Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. J Mater Res 23:2854–2872

    Article  Google Scholar 

  26. Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2186

    Article  Google Scholar 

  27. Vincent JFV (2002) Arthropod cuticle: a natural composite shell system. Compos Part A 33:1311–1315

    Article  Google Scholar 

  28. Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1:208–226

    Article  Google Scholar 

  29. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from National Science Foundation (Award #0906770) and the University of Washington Regents. We would also like to acknowledge the Nanotechnology Users Facilities (NTUF) at the University of Washington for the SEM imaging and EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, J., Wang, J. Microstructure and Mechanical Anisotropy of Crab Cancer Magister Exoskeletons. Exp Mech 54, 229–239 (2014). https://doi.org/10.1007/s11340-013-9798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9798-2

Keywords

Navigation