Skip to main content
Log in

Piezonuclear Fission Reactions from Earthquakes and Brittle Rocks Failure: Evidence of Neutron Emission and Non-Radioactive Product Elements

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Neutron emission measurements, by means of He3 devices and bubble detectors, were performed during three different kinds of compression tests on brittle rocks: (i) under monotonic displacement control, (ii) under cyclic loading, and (iii) by ultrasonic vibration. The material used for the tests was Luserna stone, with different specimen sizes and shapes, and consequently with different brittleness numbers. Some studies had been already conducted on the different forms of energy emitted during the failure of brittle materials. They are based on the signals captured by acoustic emission measurement systems, or on the detection of electromagnetic charge. On the other hand, piezonuclear neutron emissions from very brittle rock specimens in compression have been discovered only very recently. In this paper, the authors analyse this phenomenon from an experimental point of view. Since the analyzed material contains iron, additional experiments have been performed on steel specimens subjected to tension and compression, observing, also in this case, neutron emissions well distinguishable from the background level. Our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. This hypothesis is confirmed by the direct evidence of Energy Dispersive X-ray Spectroscopy (EDS) tests conducted on the specimens. It is also interesting to emphasize that the anomalous chemical balances of the major events that have affected the geomechanical and geochemical evolution of the Earth’s Crust should be considered as an indirect evidence of the piezonuclear fission reactions considered above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339

    Article  Google Scholar 

  2. Cardone F, Carpinteri A, Lacidogna G (2009) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163

    Article  Google Scholar 

  3. Carpinteri A, Cardone F, Lacidogna G (2010) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243

    Article  Google Scholar 

  4. Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests: monotonic vs cyclic loading. Phys Mesomech 13:268–274

    Article  Google Scholar 

  5. Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strenght Fract Complex 7:13–31

    Google Scholar 

  6. Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst 40:125–173

    Google Scholar 

  7. Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi static fault growth and shear fracture energy in granite. Nature 350:39–42

    Article  Google Scholar 

  8. Shcherbakov R, Turcotte DL (2003) Damage and self-similarity in fracture. Theor Appl Fract Mech 39:245–258

    Article  Google Scholar 

  9. Ohtsu M (1996) The history and development of acoustic emission in concrete engineering. Mag Concr Res 48:321–330

    Article  Google Scholar 

  10. Carpinteri A, Lacidogna G, Pugno N (2006) Richter’s laws at the laboratory scale interpreted by acoustic emission. Mag Concr Res 58:619–625

    Article  Google Scholar 

  11. Carpinteri A, Lacidogna G, Niccolini G (2006) Critical behaviour in concrete structures and damage localization by acoustic emission. Key Eng Mater 312:305–310

    Article  Google Scholar 

  12. Carpinteri A, Lacidogna G, Pugno N (2007) Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng Fract Mech 74:273–289

    Article  Google Scholar 

  13. Carpinteri A, Lacidogna G, Niccolini G (2009) Fractal analysis of damage detected in concrete structural elements under loading. Chaos Solitons Fractals 42:2047–2056

    Article  MATH  Google Scholar 

  14. Carpinteri A, Lacidogna G, Puzzi S (2009) From criticality to final collapse: evolution of the b-value from 1.5 to 1.0. Chaos Solitons Fractals 41:843–853

    Article  Google Scholar 

  15. Carpinteri A, Lacidogna G, Niccolini G, Puzzi S (2009) Morphological fractal dimension versus power-law exponent in the scaling of damaged media. Int J Damage Mech 18:259–282

    Article  Google Scholar 

  16. Miroshnichenko M, Kuksenko V (1980) Study of electromagnetic pulses in initiation of cracks in solid dielectrics. Sov Phys-Solid State 22:895–896

    Google Scholar 

  17. Warwick JW, Stoker C, Meyer TR (1982) Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960. J Geophys Res 87:2851–2859

    Article  Google Scholar 

  18. O’Keefe SG, Thiel DV (1995) A mechanism for the production of electromagnetic radiation during fracture of brittle materials. Phys Earth Planet Inter 89:127–135

    Article  Google Scholar 

  19. Scott DF, Williams TJ, Knoll SJ (2004) Investigation of electromagnetic emissions in a deep underground mine. Proc. of the 23rd Int. Conf. on Ground Control in Mining, Morgantown, 3-5 August 2004, 125–132

  20. Frid V, Rabinovitch A, Bahat D (2003) Fracture induced electromagnetic radiation. J Phys D 36:1620–1628

    Article  Google Scholar 

  21. Rabinovitch A, Frid V, Bahat D (2007) Surface oscillations. A possible source of fracture induced electromagnetic oscillations. Tectonophysics 431:15–21

    Article  Google Scholar 

  22. Lacidogna G, Carpinteri A, Manuello A, Durin G, Schiavi A, Niccolini G, Agosto A (2011) Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47(suppl 2):144–152

    Article  Google Scholar 

  23. Carpinteri A, Lacidogna G, Manuello A, Niccolini A, Schiavi A, Agosto A (2010) Mechanical and electromagnetic emissions related to stress-induced cracks. Exp Tech. doi:10.1111/j.1747-1567.2011.00709.x

  24. Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain 47(suppl 2):282–292

    Article  Google Scholar 

  25. Carpinteri A, Manuello A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain 47(suppl 2):267–281

    Article  Google Scholar 

  26. Anbar AD (2008) Elements and evolution. Science 322:1481–1482

    Article  Google Scholar 

  27. Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:467–400

    Google Scholar 

  28. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754

    Article  Google Scholar 

  29. Lacidogna G, Manuello A, Carpinteri A, Niccolini G, Agosto A, Durin G (2010) Acoustic and electromagnetic emissions in rocks under compression. Proc. of SEM Annual Conf. & Expo. on Exp. and Appl. Mechanics, Indianapolis, 7–10 June 2010, Paper N. 433

  30. Bubble Technology Industries (1992) Instruction manual for the bubble detector. Chalk River, Ontario, Canada

    Google Scholar 

  31. National Council on Radiation Protection and Measurements (1971) Protection against neutron radiation, NCRP Report 38

  32. Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582

    Article  MATH  Google Scholar 

  33. Carpinteri A (1990) A catastrophe theory approach to fracture mechanics. Int J Fract 44:57–69

    Article  MathSciNet  Google Scholar 

  34. Cardone F, Cherubini G, Petrucci A (2009) Piezonuclear neutrons. Phys Lett A 373:862–866

    Article  Google Scholar 

  35. Cardone F, Mignani R, Petrucci A (2009) Piezonuclear decay of thorium. Phys Lett A 373:1956–1958

    Article  Google Scholar 

  36. EN ISO 6892 – 1:2009 (2009) Metallic materials -- tensile testing -- part 1: method of test at room temperature

  37. Vola G, Marchi M (2009) Mineralogical and petrographic quantitative analysis of a recycled aggregate from quarry wastes. The Luserna stone case-study. Proc. of the 12th Euroseminar on Microscopy Appl. to Building Mat., 15–19 September 2009, Dortmund, Germany (2009)

  38. Sandrone R, Cadoppi P, Sacchi R, Vialon P (1993) The Dora-Maira massif. In: Von Raumer JF, Neubauer F (eds) Pre-mesozoic geology in the Alps. Springer, Berlin, pp 317–325

    Chapter  Google Scholar 

  39. Compagnoni R, Crisci GM, Sandrone R (1983) Caratterizzazione chimica e petrografica degli“gneiss di Luserna” (Massiccio cristallino Dora-Maira, Alpi Occidentali). Rend Soc It Min Petr 38:498

    Google Scholar 

  40. Sandrone R, Colombo A, Fiora L, Fornaro M, Lovera E, Tunesi A, Cavallo A (2004) Contemporary natural stones from the Italian western Alps (Piedmont and Aosta Valley regions). Periodico di Mineralogia (Special issue) 73:211–226

    Google Scholar 

  41. Kuzhevskij M, Nechaev OYu, Sigaeva EA, Zakharov VA (2003) Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Nat Hazards Earth Syst Sci 3:637–645

    Article  Google Scholar 

  42. Kuzhevskij M, Nechaev OYu, Sigaeva EA (2003) Distribution of neutrons near the Earth’s surface. Nat Hazard Earth Syst Sci 3:255–262

    Article  Google Scholar 

  43. Volodichev NN, Kuzhevskij BM, Yu NO, Panasyuk MI, Podorolsky AN, Shavrin PI (2000) Sun-Moon-Earth connections: the neutron intensity splashes and seismic activity. Astron Vestn 34:188–190

    Google Scholar 

  44. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  45. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  46. Fowler CMR (2005) The solid earth: an introduction to global geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  47. Doglioni C (2007) Interno della Terra. Treccani, Enciclopedia Scienza e Tecnica 595–605

  48. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  49. Roy I, Sarkar BC, Chattopadhyay A (2001) MINFO-a prototype mineral information database for iron ore resourcers of India. Comp Geosci 27:357–361

    Article  Google Scholar 

  50. World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-ore-producers.html; last accessed October 2009

  51. World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.htm; last accessed October 2009

  52. Key Iron Deposits of the World. Available at http://www.portergeo.com.au/tours/iron2002/-iron2002depm2b.asp; last accessed October 2009

  53. Lunine JIE (1998) Earth: evolution of a habitable world. Cambridge University Press, Cambridge, New York, Melbourne

    Book  Google Scholar 

  54. Hazen RM et al (2008) Mineral evolution. Am Mineral 93:1693–1720

    Article  Google Scholar 

  55. Condie KC (1976) Plate Tectonics and crustal evolution. Pergamon Press, Elmsford

    Google Scholar 

  56. Canfiled DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  57. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc London Ser B 361:903–915

    Article  Google Scholar 

  58. Kholodov VN, Butuzova GY (2008) Siderite formation and evolution on sedimentary iron ore deposition in the Earth’s history. Geol Ore Depos 50:299–319

    Article  Google Scholar 

  59. Foing B (2005) Earth’s childhood attic. Astrobiol. Mag. Retrospection (on-line) February 23 2005: http://www.astrobio.net/news/article1456.html

  60. Sigman D et al (2004) Polar ocean stratification in a cold climate. Nature 428:59–63

    Article  Google Scholar 

  61. Galimov EM (2005) Redox evolution of the Earth caused by a multistage formation of its core. Earth Plan Sci Lett 233:263–276

    Article  Google Scholar 

  62. Yamaguchi KE (2005) Evolution of the geochemical cycle of Fe trough geological time: iron isotope perspective. Front Res Earth E 2:4–24

    Google Scholar 

  63. Basile-Doelsch I (2006) Si stable isotope in the Earth’s surface: a review. J Geochem Explor 88:252–256

    Article  Google Scholar 

  64. Basile-Doelsch I et al (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Article  Google Scholar 

  65. De la Rocha CL et al (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477

    Article  Google Scholar 

  66. Ragueneau O, Tréguer P, Leyneart A et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob Planet Chang 26:317–365

    Article  Google Scholar 

  67. Konhauser KO et al (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754

    Article  Google Scholar 

  68. Saito MA (2009) Less nickel for more oxygen. Nature 458:714–715

    Article  Google Scholar 

  69. Egami F (1975) Minor elements and evolution. J Mol Evol 4:113–120

    Article  Google Scholar 

  70. Natl Academy of Sciences (1975) Medical and biological effects of environmental pollutants: nickel. Proc. Natl Acad Sci. Washington, DC

  71. Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44:54–62

    Google Scholar 

  72. Liu L (2004) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Article  Google Scholar 

  73. Catling CD, Zahnle KJ (2009) The planetary air leak. Sci Am 300:24–31

    Article  Google Scholar 

  74. Aki K (1983) Strong motion seismology. In: Kanamori H, Boschi E (eds) Earthquakes: observation, theory and interpretation. North-Holland Pub. Co, Amsterdam, pp 223–250

    Google Scholar 

  75. Padron E et al (2008) Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure Appl Geophys 165:95–114

    Article  Google Scholar 

  76. Cook DN (2010) Models of the atomic nucleus. Springer, Heidelberg, Dordrecht, London, New York

    Book  Google Scholar 

  77. Cook ND, Dellacasa V (1987) Face-centered cubic solid phase theory of the nucleus. Phys Rew C 35(5):1883–1890

    Google Scholar 

Download references

Acknowledgments

The financial support provided by the Regione Piemonte (Italy) RE-FRESCOS Project, is gratefully acknowledged.

Special thanks are due to R. Sandrone and A. Chiodoni from the Politecnico di Torino for their kind collaboration in the EDS analysis. The authors wish to thank also D. Madonna Ripa and A. Troia from the National Research Institute of Metrology – INRIM, for their valuable assistance during the ultrasonic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carpinteri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Lacidogna, G., Manuello, A. et al. Piezonuclear Fission Reactions from Earthquakes and Brittle Rocks Failure: Evidence of Neutron Emission and Non-Radioactive Product Elements. Exp Mech 53, 345–365 (2013). https://doi.org/10.1007/s11340-012-9629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9629-x

Keywords

Navigation