Skip to main content
Log in

Surface Decoration for Improving the Accuracy of Displacement Measurements by Digital Image Correlation in SEM

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In-situ straining experiments and residual stress evaluations by micromachining require accurate measurement of surface displacements. Such measurements can be conveniently done using Digital Image Correlation (DIC). Three surface decoration techniques are presented to enhance surface deformation and residual stress measurement capabilities on micron-scale samples within a Scanning Electron Microscope—Focused Ion Beam (SEM-FIB) instrument. They involve the use of Yttria-stabilized-zirconia nano particles applied chemically, nano platinum dots applied using FIB, and Focused Electron Beam (FEB) assisted deposition. The three decoration techniques create distinctive, random surface features that can be used with Digital Image Correlation to provide full field maps of surface displacements at high magnifications. A series of experiments using a FEGSEM-FIB demonstrated the effectiveness of the three surface decoration techniques for FEGSEM imaging at magnifications from 2,000× to 60,000×. The precision of the image correlation is substantially enhanced by the surface decoration, with displacement standard deviations reduced to the 0.005–0.03 pixel range, depending on the patch size used. By means of an example application, the use of surface decoration for microscopic hole-drilling residual stress measurements within a FIB-SEM is presented. The same trends in DIC uncertainty observed in the analysis of the surface decoration patterns carried through to the example application. Guidelines are given for appropriate choice of decoration method to suit various practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  2. Rastogi PK (2000) Photomechanics. Springer, Berlin

    Book  Google Scholar 

  3. Sirkis JS, Lim TJ (1991) Displacement and strain-measurement with automated grid methods. Exp Mech 31(4):382–388. doi:10.1007/BF02325997

    Article  Google Scholar 

  4. Quinta De Fonseca J, Mummery P, Withers PJ (2004) Full-field strain mapping by optical correlation of micrographs acquired during deformation. J Microsc 218:9–21. doi:10.1111/j.1365-2818.2005.01461.x

    Article  Google Scholar 

  5. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress-analysis. Opt Eng 21(3):427–431

    Google Scholar 

  6. Peters WH, Ranson WF, Sutton MA, Chu TC, Anderson J (1983) Application of digital correlation methods to rigid body mechanics. Opt Eng 22(6):738–742

    Google Scholar 

  7. McGinnis MJ, Pessiki S, Turker H (2005) Application of three-dimensional digital image correlation to the core-drilling method. Exp Mech 45(4):359–367. doi:10.1177/0014485105055435

    Article  Google Scholar 

  8. Birgisson B, Montepara A, Romeo E, Roncella R, Roque R, Tebaldi G (2009) An optical strain measurement system for asphalt mixtures. Mater Struct/Materiaux et Constructions 42(4):427–441. doi:10.1617/s11527-008-9392-8

    Google Scholar 

  9. Niendorf T, Dadda J, Canadinc D, Maier HJ, Karaman I (2009) Monitoring the fatigue-induced damage evolution in ultrafine-grained interstitial-free steel utilizing digital image correlation. Mater Sci Eng, A 517(1–2):225–234. doi:10.1016/j.msea.2009.04.053

    Google Scholar 

  10. Yaofeng S, Pang JHL (2007) Study of optimal subset size in digital image correlation of speckle pattern images. Opt Lasers Eng 45(9):967–974. doi:10.1016/j.optlaseng.2007.01.012

    Article  Google Scholar 

  11. Jin H, Lu WY, Korellis J (2008) Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J Strain Anal Eng Des 43(8):719–728. doi:10.1243/03093247JSA412

    Article  Google Scholar 

  12. Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787. doi:10.1007/s11340-007-9042-z

    Article  Google Scholar 

  13. Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804. doi:10.1007/s11340-007-9041-0

    Article  Google Scholar 

  14. Scrivens WA, Luo Y, Sutton MA, Collette SA, Myrick ML, Miney P, Colavita PE, Reynolds AP, Li X (2007) Development of patterns for digital image correlation measurements at reduced length scales. Exp Mech 47(1):63–77. doi:10.1007/s11340-006-5869-y

    Article  Google Scholar 

  15. Sabate N, Vogel D, Gollhardt A, Marcos J, Gracia I, Cane C, Michel B (2006) Digital image correlation of nanoscale deformation fields for local measurement in thin films. Nanotechnology 17:5264–5270. doi:10.1088/0957-4484/17/20/037

    Article  Google Scholar 

  16. Sabate N, Vogel D, Gollgardt A, Keller J, Cane C, Gracia I, Morante JR, Michel B (2006) Measurement of residual stress by slot milling with focused ion-beam equipment. J Micromech Microeng 16(2):254–259. doi:10.1088/0960-1317/16/2/009

    Article  Google Scholar 

  17. Sabate N, Vogel D, Gollgardt A, Marcos J, Gracia I, Cane C, Michel B (2007) FIB-based technique for stress characterisation on thin films for reliability purposes. Microelectron Eng 84(5–8):1783–1787. doi:10.1016/j.mee.2007.01.272

    Article  Google Scholar 

  18. Winiarski B, Langford RM, Tian J, Yokoyama Y, Liaw PK, Withers PJ (2010) Mapping residual-stress distributions at the micron scale in amorphous materials. Metall Mater Trans A 41:1743–1751. doi:10.1007/s11661-009-0127-4

    Article  Google Scholar 

  19. Winiarski B, Withers PJ (2011) Micron-scale residual stress measurement using micro-hole drilling and digital image correlation. Experimental Mechanics. Online First doi:10.1007/s11340-011-9502-3

  20. Winiarski B, Withers PJ (2010) Mapping residual stress profiles at the micron scale using FIB micro-hole drilling. Appl Mech Mater 24–25:267–272. doi:10.4028/www.scientific.net/AMM.24-25.267

    Article  Google Scholar 

  21. Winiarski B., Gholinia A., Tian J., Yokoyama Y., Liaw P.K. and Withers P.J. Submicron-scale study of residual-stress profiles in amorphous materials by incremental focused ion beam slotting. In peer-review—Acta Materialia.

  22. Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4):1197–1276. doi:10.1116/1.2955728

    Article  Google Scholar 

  23. Langford RM, Nellen PM, Gierak J, Fu Y (2007) Focused ion beam micro- and nanoengineering. MRS Bull 32(5):417–423

    Article  Google Scholar 

  24. Giannuzzi LA, Stevie FA (eds) (2005) Introduction to focused ion beam. Springer, New York

    Google Scholar 

  25. Tellez H, Vadillo JM, Chater RJ, Laserna JJ, McPhail DS (2008) Focused ion beam imaging of laser ablation sub-surface effects on layered materials. Appl Surf Sci 255(5):2265–2269. doi:10.1016/j.apsusc.2008.07.082

    Article  Google Scholar 

  26. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44(11):1132–1145. doi:10.1016/j.optlaseng.2005.10.004

    Article  Google Scholar 

  27. Kang K, Yao N, He MY, Evans AG (2003) A method for in situ measurement of the residual stress in thin films by using the focused ion beam. Thin Solid Films 443:71–77. doi:10.1016/S0040-6090(03)00946-5

    Article  Google Scholar 

  28. Sun Z, Lyons JS, McNeill SR (1997) Measuring microscopic deformations with digital image correlation. Opt Lasers Eng 27(4):409–428

    Article  Google Scholar 

  29. Collette SA, Sutton MA, Miney P, Reynolds AP, Li XD, Colavita PE, Scrivens WA, Luo Y, Sudarshan T, Myzykow P, Myrick ML (2004) Development of patterns for nanoscale strain measurements: I. Fabrication of imprinted Au webs for polymeric materials. Nanotechnology 15(12):1812–1817. doi:10.1088/0957-4484/15/12/021

    Article  Google Scholar 

  30. Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47(1):51–62. doi:10.1007/s11340-006-0531-2

    Article  Google Scholar 

  31. Kern P, Jaggi C, Utke I, Friendi V, Michler J (2006) Local electron beam induced reduction and crystalization of maorphous titania films. Appl Phys Lett 89:021902. doi:10.1063/1.2219398

    Article  Google Scholar 

  32. Rubanov S, Munroe PR (2001) Investigation of the structure of damage layers in TEM samples prepared using a focused ion beam. J Mater Sci Lett 20(13):1181–1183. doi:10.1023/A:1010950201525

    Article  Google Scholar 

  33. Kwong WY, Zhang WY (2005) Electron-beam assisted platinum deposition as a protective layer for FIB and TEM applications. in IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings. San Jose, CA. YE118: p. 469–471

  34. FEI, FEI Company Technical Note PN 4035 272 21851-A, 9/24/02. 2002

  35. Van Kouwen L, Botman A, Hagen CW (2009) Focused electron-beam-induced deposition of 3 nm dots in a scanning electron microscope. Nano Letters 9(5):2149–2152. doi:10.1021/nl900717r

    Article  Google Scholar 

  36. Bingleman L (2010) Enhancing the robustness of ESPI measurements using digital image correlation. In Dept. Mechanical Engineering. University of British Columbia: Vancouver

  37. Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Chapter 10—advances in two-dimensional and three-dimensional computer vision. In: Rastogi PK (ed) Photomechanics. Springer, New York

    Google Scholar 

  38. Winiarski B, Wang G, Xie X, Cao Y, Shin Y, Liaw PK, Withers PJ (2011) Mapping residual-stress distributions in laser-peened Vit-105 BMG using the focused-ion-beam micro-slitting method. In MRS 2010 Conference Proceedings. Cambridge Press

  39. Liaw PK, Xie X, Cao Y, Winiarski B, Wang G, Withers PJ, Shin Y (2011) Surface modification of bulk-metallic glasses by laser-peening process. In Proceedings of 2011 NSF Engineering Research and Innovation Conference. January 4–7 2011, Atlanta, GA, USA

  40. Cao Y, Xie X, Winiarski B, Wang G, Shin YC, Withers PJ, Liaw PK (2011) Residual stresses induced by laser shock peening on Zr-based bulk metallic glass and its effect on plasticity. In Proceedings of TMS2011Annual Meeting and Exhibition, Bulk Metallic Glasses VIII. Cambridge Press.: Feb. 27–Mar. 3, 2011 San Diego, California, USA

  41. Schajer GS, Winiarski B, Withers PJ (2011) Hole-drilling residual stress measurement with artifact correction using full-field DIC. J Eng Mater Technol. To be presented at SEM XII International Congress & Exposition on Experimental and Applied Mechanics, 2012

  42. Tian JW, Shaw LL, Wang YD, Yokoyama Y, Liaw PK (2009) A study of the surface severe plastic deformation behaviour of a Zr-based bulk metallic glass (BMG). Intermetallics 17(11):951–957. doi:10.1016/j.intermet.2009.04.010

    Article  Google Scholar 

Download references

Acknowledgments

The measurements were made within the Stress and Damage Characterization Unit at the University of Manchester, U.K., supported by the Light Alloys Towards Environmentally Sustainable Transport (LATEST) EPSRC Portfolio Project. We are grateful to P. Liaw (the University of Tennessee, U.S.A.) and Y. Yokoyama (Himeji Institute of Technology, Japan) for provision of the sample; to P. Xiao (the University of Manchester, U.K.) for YSZ nanopowder and A. Gholinia (the University of Manchester, U.K.) for technical and scientific suggestions during the experiment. Author GSS was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Winiarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winiarski, B., Schajer, G.S. & Withers, P.J. Surface Decoration for Improving the Accuracy of Displacement Measurements by Digital Image Correlation in SEM. Exp Mech 52, 793–804 (2012). https://doi.org/10.1007/s11340-011-9568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9568-y

Keywords

Navigation