Skip to main content
Log in

Mapping Residual Stress Distributions at the Micron Scale in Amorphous Materials

  • Symposium: Bulk Metallic Glasses VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Residual stresses in crystalline or glassy materials often play a key role in the performance of advanced devices and components. However, stresses in amorphous materials cannot easily be determined at the micron scale by diffraction, or by other conventional laboratory methods. In this article, a technique for mapping residual stress profiles in amorphous materials with high spatial definition is presented. By applying a focused ion beam (FIB)–based semidestructive mechanical relaxation method, the stresses are mapped in a peened and fatigued bulk metallic glass (BMG) (Zr50Cu40Al10 at. pct). The residual stresses are inferred using finite element analysis (FEA) of the surface relaxations, as measured by digital image correlation (DIC), that occur when a microslot is micromachined by FIB. Further, we have shown that acceptable accuracy can in most cases be achieved using a simple analytical model of the slot. It was found that the fatigue cycling significantly changes the distribution of compressive residual stresses with depth in the plastically deformed surface layer. Our observations point to the scalability of this method to map residual stresses in volumes as small as 1 × 1 × 0.2 μm3 or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. LaVision DaVis is a trademark of LaVision GmbH, Goettingen, Germany.

References

  1. A.L. Greer: Nature, 1999, vol. 402, pp. 132–33.

    Article  ADS  CAS  Google Scholar 

  2. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–89.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.

    CAS  Google Scholar 

  4. A. Inoue, I. Yoshii, H. Kimura, K. Okumura, and J. Kurosaki: Mater. Trans., 2003, vol. 44, pp. 2391–95.

    Article  CAS  Google Scholar 

  5. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert: Phys. Rev. Lett., 2005, vol. 94, pp. 205501–205504.

    Article  PubMed  ADS  CAS  Google Scholar 

  6. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2004, vol. 12, pp. 885–92.

    Article  CAS  Google Scholar 

  7. M.F. Ashby and A.L. Greer: Scripta Mater., 2006, vol. 54, pp. 321–26.

    Article  CAS  Google Scholar 

  8. C.C. Aydiner and E. Ustundag: Mech. Mater., 2005, vol. 37, pp. 201–12.

    Article  Google Scholar 

  9. Y. Zhang, W.H. Wang, and A.L. Greer: Nat. Mater., 2006, vol. 5, pp. 857–60.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty: Scripta Mater., 2008, vol. 59, pp. 167–70.

    Article  CAS  Google Scholar 

  11. L.Y. Chen, Q. Ge, S. Qu, and J.Z. Jiang: Scripta Mater., 2008, vol. 59, pp. 1210–13.

    Article  CAS  Google Scholar 

  12. F.O. Méar, G. Vaughan, A.R. Yavari, and A.L. Greer: Philos. Mag. Lett., 2008, vol. 88, pp. 757–66.

    Article  ADS  CAS  Google Scholar 

  13. P.J. Withers: Rep. Prog. Phys., 2007, vol. 70, pp. 2211–64.

    Article  ADS  Google Scholar 

  14. R. Gardon: Elasticity and Strength in Glasses, Academic, New York, NY, 1980, pp. 145–216.

    Google Scholar 

  15. C.C. Aydiner, E. Ustundag, and J.C. Hanan: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2709–15.

    Article  Google Scholar 

  16. C.C. Aydiner, E. Ustundag, M.B. Prime, and A. Peker: J. Non-Cryst. Solids, 2003, vol. 316, pp. 82–95.

    Article  Google Scholar 

  17. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: J. Appl. Phys., 2003, vol. 94, pp. 904–11.

    Article  ADS  CAS  Google Scholar 

  18. A. Turnbull, J.J. Pitts, and J.D. Lord: Mater. Sci. Technol., 2008, vol. 24, pp. 327–34.

    Article  CAS  Google Scholar 

  19. H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimaki, and M. Daymond: Nat. Mater., 2005, vol. 4, pp. 33–36.

    Article  PubMed  ADS  CAS  Google Scholar 

  20. J. Das, M. Bostrom, N. Mattern, A. Kvick, A.R. Yavari, A.L. Greer, and J. Eckert: Phys. Rev. B, 2007, vol. 76, pp. 092203-1–092203-4.

  21. P.J. Withers and H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  22. P.J. Withers, M. Turski, L. Edwards, P.J. Bouchard, and D.J. Buttle: Int. J. Pressure Vessels Pip., 2008, vol. 85, pp. 118–27.

    Article  CAS  Google Scholar 

  23. O.E. Kongstein, U. Bertocci, and G.R. Stafford: J. Electrochem. Soc., 2005, vol. 152, pp. C116–C123.

    Article  CAS  Google Scholar 

  24. H. Tada, P. Paris, and G. Irwin: The Stress Analysis of Cracks Handbook, PEP, Bury St. Edmunds, UK, 2000, pp. 82–96.

    Google Scholar 

  25. K.J. Kang, N. Yao, M.Y. He, and A.G. Evans: Thin Solid Films, 2003, vol. 443, pp. 71–77.

    Article  ADS  CAS  Google Scholar 

  26. N. Sabate, D. Vogel, A. Gollhardt, J. Keller, C. Cane, I. Gracia, J.R. Morante, and B. Michel: J. Micromech. Microeng., 2006, vol. 16, pp. 254–59.

    Article  ADS  CAS  Google Scholar 

  27. J.W. Tian, L.L. Shaw, Y.D. Wang, Y. Yokoyama, and P.K. Liaw: Intermetallics, 2009, vol. 17 (11), pp. 951–57.

    Article  CAS  Google Scholar 

  28. J. Quinta De Fonseca, P.M. Mummery, and P.J. Withers: J. Microsc., 2004, vol. 218, pp. 9–21.

    Article  Google Scholar 

  29. A.N. Guz: Int. Appl. Mech., 2000, vol. 36, pp. 1537–64.

    Article  Google Scholar 

  30. J.M. Pelletier, Y. Yokoyama, and A. Inoue: Mater. Trans., 2007, vol. 47, pp. 1359–62.

    Article  CAS  Google Scholar 

  31. K.J. Kang, S. Darzens, and G.-S. Choi: J. Eng. Mater. Technol., 2004, vol. 126, pp. 457–64.

    Article  CAS  Google Scholar 

  32. M. Nastasi and J.W. Mayer: Ion Implantation and Synthesis of Materials, Springer-Verlag, Berlin-Heidelberg, 2006, pp. 49–61.

    Google Scholar 

  33. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping Range of Ions in Matter, Pergamon Press, New York, NY, 1985, pp. 67–78.

    Google Scholar 

  34. S. Lipp, L. Frey, C. Lehrer, B. Frank, E. Demm, and H. Ryssel: J. Vac. Sci. Technol., 1996, vol. 14, pp. 3996–99.

    Article  CAS  Google Scholar 

  35. B.W. Kempshall and L.A. Giannuzzi: J. Vac. Sci. Technol., 2002, vol. 20, pp. 286–90.

    Article  CAS  Google Scholar 

  36. T.J. Kang, J.G. Kim, J.S. Lee, J.H. Lee, J.H. Hahn, H.Y. Lee, and Y.H. Kim: J. Micromech. Microeng., 2005, vol. 15, pp. 2469–78.

    Article  ADS  CAS  Google Scholar 

  37. W.J. Arora, H.I. Smith, and G. Barbastathis: Microelectron. Eng., 2007, vol. 84, pp. 1454–58.

    Article  CAS  Google Scholar 

  38. S. Massl, J. Keckes, and R. Pippan: Acta Mater., 2007, vol. 55, pp. 4835–44.

    Article  CAS  Google Scholar 

  39. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Acta Metall., 1982, vol. 30, pp. 447–55.

    Article  CAS  Google Scholar 

  40. S. Carlsson and P.L. Larsson: Acta Mater., 2001, vol. 49, pp. 2179–91.

    Article  CAS  Google Scholar 

  41. X. Chen, J. Yan, and A.M. Karlsson: Mater. Sci. Eng. A., 2006, vol. 416, pp. 139–49.

    Article  CAS  Google Scholar 

  42. W. Cheng and I. Finnie: Residual Stress Measurement and the Slitting Method, Springer, New York, NY, 2007, pp. 123–35.

  43. B. Winiarski and P.J. Withers: Unpublished research.

Download references

Acknowledgments

The stress measurements were made within the Stress and Damage Characterization Unit at the University of Manchester supported by the Light Alloys Towards Environmentally Sustainable Transport (LATEST) Engineering and Physical Sciences Research Council (EPSRC) Portfolio Project. Two of the authors (JT and PKL) are supported by the National Science Foundation International Materials Institutes (IMI) and Combined Research and Curriculum Development (CRCD) Programs, Tennessee. The nanoindentation results were obtained from Reference 27 and were developed by Professor L.L. Shaw of the University of Connecticut, Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Withers.

Additional information

This article is based on a presentation given in the symposium “Bulk Metallic Glasses VI,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of TMS, the TMS Structural Materials Division, TMS/ASM: Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winiarski, B., Langford, R.M., Tian, J. et al. Mapping Residual Stress Distributions at the Micron Scale in Amorphous Materials. Metall Mater Trans A 41, 1743–1751 (2010). https://doi.org/10.1007/s11661-009-0127-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0127-4

Keywords

Navigation