Skip to main content
Log in

Application of digital image correlation and Williams series approximation to characterize mode I stress intensity factor

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Existing methods of stress intensity factor (SIF) estimation are commonly based on the contact measurements of crack length with subsequent computation at taking into account the specimen geometry and loading process. The paper aims at the enhancement and verification of the non-contact and easily implemented technique for the assessment of mode I SIF during mechanical tests. Displacement fields constructed by digital image correlation (DIC) were approximated using Williams series in order to determine precise crack tip coordinates and proceed to the computation of stress intensity factor (SIF). The approximation algorithm was tested on linear-elastic and elastic–plastic ABAQUS models under various stress levels and the different Williams series term number. Besides numerical modeling of SIF, the algorithm was tested through assessment of crack propagation parameters under fatigue crack growth with the use of coarse- and fine-grained titanium samples. For the crack length range a/W ≤ 0.3, the approximation algorithm using the Williams series may be employed for estimating crack tip coordinates (crack length) and mode I stress intensity factor with satisfactory level of accuracy. The results of the study appeared to hold the promise of automated non-contact measurements of the crack length as well as stress intensity factor under fatigue crack propagation by employing DIC and appropriate high-performance real-time computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\({a}_{n}\) , \({b}_{n}\) :

Constants in Williams series

a/W :

Crack length divided on the specimen overall width

Dx :

Error of the crack tip coordinate estimation along the x-axis

G :

Shear modulus

H :

Hessian matrix

K I , K II :

Mode I and II stress intensity factors

m :

Number of terms in Williams series

N :

The number of displacement vectors, provided by digital image correlation computation

R y :

Radius of the plastic zone

Tx, Ty, R :

Terms in Williams series responsible for offset due to rigid body motion along x, y-axis, and rotation

u :

Displacement components along x-axis

v :

Displacement components along y-axis

(\({x}_{0}\) , \({y}_{0}\)):

Crack tip coordinates along x- and y-axis

\(\lambda\) :

The coefficient for the algorithm step in Newton–Raphson method

ν :

Poisson's ratio

σ y :

Yield stress

AE:

Approximation error [pixels]

CTE:

Crack tip coordinate estimation error [pixels]

CTOD:

Crack tip opening displacement

DIC:

Digital image correlation

FEM:

Finite element modeling

SIF:

Stress intensity factor

References

  1. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24, 361–364 (1957)

    Article  Google Scholar 

  2. Cherepanov, G.P.: Crack propagation in continuous media. J Appl Math Mech 31, 503–512 (1967). https://doi.org/10.1016/0021-8928(67)90034-2

    Article  MATH  Google Scholar 

  3. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35, 379–386 (1968). https://doi.org/10.1115/1.3601206

    Article  Google Scholar 

  4. Iyer, N.R., Alani, G.S., Ramachandra Murthy, A.: Advanced methodologies for fracture analysis and damage tolerant evaluation. Proc Indian Natl Sci Acad 82, 209–222 (2016). https://doi.org/10.16943/ptinsa/2016/48414

    Article  Google Scholar 

  5. Giglio, M., Manes, A.: Terminal ballistic effect on the crack growth assessment of a helicopter rotor drive. Eng Fract Mech 78, 1542–1554 (2011). https://doi.org/10.1016/j.engfracmech.2011.01.024

    Article  Google Scholar 

  6. Koohbor, B., Mallon, S., Kidane, A., Sutton, M.A.: A DIC-based study of in-plane mechanical response and fracture of orthotropic carbon fiber reinforced composite. Compos Part B Eng 66, 388–399 (2014). https://doi.org/10.1016/j.compositesb.2014.05.022

    Article  Google Scholar 

  7. Otegui, J.L., Mohaupt, U.H., Burns, D.J.: A strain gauge technique for monitoring small fatigue cracks in welds. Eng Fract Mech 40, 549–569 (1991). https://doi.org/10.1016/0013-7944(91)90150-Y

    Article  Google Scholar 

  8. Van Minnebruggen, K., Verstraete, M., Hertelé, S., De Waele, W.: Evaluation and comparison of double clip gauge method and delta 5 method for CTOD measurement in SE(T) specimens. J Test Eval 44, 20150127 (2016). https://doi.org/10.1520/jte20150127

    Article  Google Scholar 

  9. (1983) Fatigue mechanisms: advances in quantitative measurement of physical damage. ASTM Spec. Tech. Publ.

  10. Döll, W.: Optical interference measurements and fracture mechanics analysis of crack tip craze zones. In: Crazing in Polymers, pp. 105–168. Springer-Verlag, Berlin/Heidelberg (2005)

    Google Scholar 

  11. Theocaris, P.S., Gdoutos, E.E.: Photoelastic determination of KI stress intensity factors. Eng Fract Mech 7, 331–336 (1975). https://doi.org/10.1016/0013-7944(75)90014-4

    Article  Google Scholar 

  12. Smith, D.G., Smith, C.W.: Photoelastic determination of mixed mode stress intensity factors. Eng Fract Mech 4, 357–366 (1972). https://doi.org/10.1016/0013-7944(72)90050-1

    Article  Google Scholar 

  13. Marloff, R.H., Leven, M.M., Ringler, T.N., Johnson, R.L.: Photoelastic determination of stress-intensity factors - Paper describes several methods for calculating the stress-intensity factor from the photoelastically determined stress distributions near the tip of a notch. Exp Mech 11, 529–539 (1971). https://doi.org/10.1007/BF02329095

    Article  Google Scholar 

  14. Sutton, M.A., Deng, X., Liu, J., Yang, L.: Determination of elastic-plastic stresses and strains from measured surface strain data. Exp Mech 36, 99–112 (1996). https://doi.org/10.1007/BF02328705

    Article  Google Scholar 

  15. Pan, B.: Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas Sci Technol 29, 082001 (2018). https://doi.org/10.1088/1361-6501/aac55b

    Article  Google Scholar 

  16. McNeill, S.R., Peters, W.H., Sutton, M.A.: Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28, 101–112 (1987). https://doi.org/10.1016/0013-7944(87)90124-X

    Article  Google Scholar 

  17. Yates, J.R., Zanganeh, M., Tai, Y.H.: Quantifying crack tip displacement fields with DIC. Eng Fract Mech 77, 2063–2076 (2010). https://doi.org/10.1016/j.engfracmech.2010.03.025

    Article  Google Scholar 

  18. Yoneyama, S., Morimoto, Y., Takashi, M.: Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain 42, 21–29 (2006). https://doi.org/10.1111/j.1475-1305.2006.00246.x

    Article  Google Scholar 

  19. Yoneyama, S., Ogawa, T., Kobayashi, Y.: Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Eng Fract Mech (2007). https://doi.org/10.1016/j.engfracmech.2006.08.004

    Article  Google Scholar 

  20. Iryani, L., Dirgantara, T., Mihradi, S., Putra, I.S.: The effect of DIC parameters in the measurement of stress intensity factors KI and KII. J Mech Eng 10, 17–33 (2013)

    Google Scholar 

  21. Zhang, R., He, L.: Measurement of mixed-mode stress intensity factors using digital image correlation method. Opt Lasers Eng (2012). https://doi.org/10.1016/j.optlaseng.2012.01.009

    Article  Google Scholar 

  22. Richter-Trummer, V., Moreira, P.M.G.P., Pastrama, S.D., et al.: Methodology for in situ stress intensity factor determination on cracked structures by digital image correlation. Int J Struct Integr (2010). https://doi.org/10.1108/17579861011099178

    Article  Google Scholar 

  23. Gonzáles GLG, Diaz JG, González JAO et al (2017) Determining SIFs using DIC considering crack closure and blunting. In: Conference proceedings of the society for experimental mechanics series

  24. Rybicki, E.F., Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9, 931–938 (1977). https://doi.org/10.1016/0013-7944(77)90013-3

    Article  Google Scholar 

  25. Beretta, S., Patriarca, L., Rabbolini, S.: Stress intensity factor calculation from displacement fields. Frat ed Integrita Strutt 11, 269–276 (2017). https://doi.org/10.3221/IGF-ESIS.41.36

    Article  Google Scholar 

  26. Ktari, A., Baccar, M., Shah, M., et al.: A crack propagation criterion based on ΔcTOD measured with 2D-digital image correlation technique. Fatigue Fract Eng Mater Struct 37, 682–694 (2014). https://doi.org/10.1111/ffe.12153

    Article  Google Scholar 

  27. Vavrik, D., Jandejsek, I.: Experimental evaluation of contour J integral and energy dissipated in the fracture process zone. Eng Fract Mech 129, 14–25 (2014). https://doi.org/10.1016/j.engfracmech.2014.04.002

    Article  Google Scholar 

  28. Roux, S., Réthoré, J., Hild, F.: Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys (2009). https://doi.org/10.1088/0022-3727/42/21/214004

    Article  Google Scholar 

  29. Roux, S., Hild, F.: Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140, 141–157 (2006)

    Article  MATH  Google Scholar 

  30. Réthoré, J., Roux, S., Hild, F.: Noise-robust stress intensity factor determination from kinematic field measurements. Eng Fract Mech 75, 3763–3781 (2008). https://doi.org/10.1016/j.engfracmech.2007.04.018

    Article  Google Scholar 

  31. Hamam, R., Hild, F., Roux, S.: Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue. Strain 43, 181–192 (2007)

    Article  Google Scholar 

  32. Williams, M.L.: On stress distribution at base of stationary crack. J Appl Mech 24, 109–114 (1957). https://doi.org/10.1115/1.3640470

    Article  MathSciNet  MATH  Google Scholar 

  33. Williams, M.L.: The bending stress distribution at the base of a stationary crack. J Appl Mech 28, 78–82 (1960). https://doi.org/10.1115/1.3640470

    Article  MathSciNet  MATH  Google Scholar 

  34. Zanganeh, M., Lopez-Crespo, P., Tai, Y.H., Yates, J.R.: Locating the crack tip using displacement field data: a comparative study. Strain 49, 102–115 (2013). https://doi.org/10.1111/str.12017

    Article  Google Scholar 

  35. Harilal, R., Vyasarayani, C.P., Ramji, M.: A linear least squares approach for evaluation of crack tip stress field parameters using DIC. Opt Lasers Eng 75, 95–102 (2015). https://doi.org/10.1016/j.optlaseng.2015.07.004

    Article  Google Scholar 

  36. Gonzáles GLGG, Diaz JG, González JAOO, et al (2017) Determining SIFs using DIC considering crack closure and blunting. In: Conference proceedings of the society for experimental mechanics series. pp 25–36

  37. Hellan, K.: Introduction to fracture mechanics. McGraw-Hill Inc, New York (1984)

    Google Scholar 

  38. Liu, M., Gan, Y., Hanaor, D.A.H., et al.: An improved semi-analytical solution for stress at round-tip notches. Eng Fract Mech 149, 134–143 (2015). https://doi.org/10.1016/j.engfracmech.2015.10.004

    Article  Google Scholar 

  39. Tada, H., Paris, P.C., Irwin, G.R.: The stress analysis of cracks handbook, 3rd edn. ASME Press, New York (2000)

    Book  Google Scholar 

  40. Yoneyama, S., Ogawa, T., Kobayashi, Y.: Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Eng Fract Mech 74, 1399–1412 (2007). https://doi.org/10.1016/j.engfracmech.2006.08.004

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by Government research assignment for ISPMS SB RAS, project FWRW-2021-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Eremin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, A., Lyubutin, P., Panin, S. et al. Application of digital image correlation and Williams series approximation to characterize mode I stress intensity factor. Acta Mech 233, 5089–5104 (2022). https://doi.org/10.1007/s00707-022-03374-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03374-5

Navigation