Skip to main content

Computational and Experimental Methods to Investigate Fracture Behavior of Functionally Graded Material Structures—A Critical Review

  • Conference paper
  • First Online:
Recent Advances in Smart Manufacturing and Materials

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1063 Accesses

Abstract

Functionally gradient materials (FGM) are one of the most widely used advanced materials because of their adaptability to different situations by changing the material constituents. In recent decades, the crack problems of FGMs have attracted a significant amount of attention. This paper presents a comprehensive review of developments, applications, mathematical idealizations, computational and experimental methods, and solutions that are adopted for the analysis of FGMs. In spite of the variety of methods used to date of analysis of fracture behavior of FGMs, several common themes have emerged. Many of these works provide a fundamental understanding of the basic fracture behavior of the material. An attempt has been made to classify various numerical methods used for the crack and fatigue analyses of FGMs. Finally, some vital suggestions for future scope of research in the area of FGMs are presented. It is hoped that this review paper will serve the interests of all the academicians, researchers, and engineers involved in the analysis and design of FGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marur, P. R., & Tippur, H. V. (2000). Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. International Journal of Solids and Structures, 37, 5353–5370.

    Google Scholar 

  2. Li, H., Lambros, J., Cheeseman, B. A., & Santare, M. H. (2000) Experimental investigation of the quasi-static fracture of functionally graded materials. International Journal of Solids and Structures, 37, 3715–3732.

    Google Scholar 

  3. Ueda, S., & Shindo, Y. (2000). Crack kinking in functionally graded materials due to an initial strain resulting from stress relaxation. Journal of Thermal Stresses, 23, 285–290.

    Google Scholar 

  4. Rousseau, C.-E., & Tippur, H. V. (2000) Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia, 48, 4021–4033.

    Google Scholar 

  5. Rousseau, C.-E., & Tippur, H. V. (2001) Influence of elastic gradient profiles on dynamically loaded functionally graded materials: cracks along the gradient. International Journal of Solids and Structures, 38, 7839–7856.

    Google Scholar 

  6. Rousseau, C.-E., & Tippur, H. V. (2001) Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: Experiment and analysis. Mechanics of materials, 33, 403–421.

    Google Scholar 

  7. Rousseau, C.-E., & Tippur, H. V. (2002) Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: Cracks parallel to elastic gradient. International Journal of Fracture, 114, 87–112.

    Google Scholar 

  8. Wang, Z., & Nakamura, T. (2004). Simulations of crack propagation in elastic–plastic graded materials. Mechanics of Materials, 36, 601–622.

    Article  Google Scholar 

  9. Kim, J.-H., & Paulino, G. H. (2003). An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models. International Journal of Numerical Methods in Engineering, 58, 1457–1497.

    Google Scholar 

  10. Kim, J.-H., & Paulino, G. H. (2003). Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials. Mechanics of Materials, 35, 107–128.

    Google Scholar 

  11. Kim, J.-H., & Paulino, G. H. (2003). The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. International Journal of Solids and Structures, 40, 3967–4001.

    Google Scholar 

  12. Kim, J.-H., & Paulino, G. H. (2003). T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Computer Methods Application Mechanics and Engineering, 92, 1463–1494.

    Google Scholar 

  13. Tilbrook, M., Rutgers, L., Moon, R., & Hoffman, M. (2005). Fracture and fatigue crack propagation in graded composites. Functionally graded materials VIII. In Proceedings of the eight international symposium on multifunctional and functionally graded materials, Materials Science Forum Trans Technology Publications Ltd., Uetikon-Zuerich, Switzerland, pp. 492–493, 573–580.

    Google Scholar 

  14. Jamwal, A., Vates, U. K., Gupta, P., Aggarwal, A., & Sharma, B. P. (2019). Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. In Advances in industrial and production engineering (pp. 349–356). Singapore: Springer

    Google Scholar 

  15. Kim, J.-H., & Paulino, G. H. (2005). Mixed-mode crack propagation in functionally graded materials. Materials Science Forum, 492, 409–414.

    Google Scholar 

  16. Kim, J.-H., & Paulino, G. H. (2007). On fracture criteria for mixed-mode crack propagation in functionally graded materials. Mechanics of Advanced Materials and Structures, 14, 227–244.

    Google Scholar 

  17. Kirugulige, M. S., Kitey, R., & Tippur, H. V. (2005). Dynamic fracture behavior of model sandwich structures with functionally graded core: A feasibility study. Composites Science and Technology, 65, 1052–1068

    Google Scholar 

  18. Kakkar, K., Rawat, N., Jamwal, A., & Aggarwal, A. (2018). Optimization of surface roughness, material removal rate and tool wear rate in EDM using Taguchi method. International Journal of Advanced Research Ideas Innovations Technology, 4(2), 16–24.

    Google Scholar 

  19. Dag, S., & Ayse Ilhan, K. (2008). Mixed-mode fracture analysis of orthotropic functionally graded material coatings using analytical and computational methods. Journal of Applied Mechanics, 75, 1–9.

    Google Scholar 

  20. Kirugulige, M., & Tippur, H. V. (2008). Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurements and finite element simulations. Journal of Applied Mechanics, 75, 1–14.

    Google Scholar 

  21. Aloulou, W., Yildirim, B., El-Borgi, S., & Zghal, A. (2009). Buckling of an orthotropic graded coating with an embedded crack bonded to a homogeneous substrate. International Journal of Solids and Structures, 46, 1890–1900.

    Google Scholar 

  22. Yu, Z., & Chu, F. (2009). Identification of crack in functionally graded material beams using the p-version of finite element method. Journal of Sound and Vibration, 325, 69–84.

    Google Scholar 

  23. Jaroniek, M. (2010). Experimental model of fracture of functionally graded materials. Journal of Theoretical and Applied Mechanics, 48, 71–86.

    Google Scholar 

  24. Rekik, M., Neifar, M., & El-Borgi, S. (2010). An axisymmetric problem of an embedded crack in a graded layer bonded to a homogeneous half-space. International Journal of Solids and Structures, 47, 2043–2055.

    Google Scholar 

  25. Martínez-Pañeda, E., & Gallego, R. (2015) Numerical analysis of quasi-static fracture in functionally graded materials. International Journal of Mechanics in Materials Design, 1, 405–424.

    Google Scholar 

  26. Benamara, N., Boulenouar, A., & Aminallah, M. (2017). Strain Energy density prediction of mixed-mode crack propagation in functionally graded materials. Periodica Polytechnica Mechanical Engineering, 61(1), 60–67.

    Article  Google Scholar 

  27. Hirshikesh, S. N., Annabattula, R. K., & Martínez-Pañeda, E. (2019). Phase field modelling of crack propagation in functionally graded materials. Composites Part B, 69, 239–248.

    Google Scholar 

  28. Chafia, M., Boulenouara, A. (2019). A numerical modelling of mixed mode crack initiation and growth in functionally graded materials. Materials Research, 22(3), e20180701.

    Google Scholar 

  29. Jamwal, A., Prakash, P., Kumar, D., Singh, N., Sadasivuni, K. K., Harshit, K., Gupta, S., & Gupta, P. (2019). Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. Journal of Composite Materials, 53(18), 2545–2553.

    Article  Google Scholar 

  30. Kandula, S. S. V., Abanto-Bueno, J., Geubelle, P. H., & Lambros, J. (2005). Cohesive modeling of dynamic fracture in functionally graded materials. International Journal of Fracture, 132, 275–296.

    Google Scholar 

  31. Kumar, A., Arafath, M. Y., Gupta, P., Kumar, D., Hussain, C. M., & Jamwal, A. (2020). Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite. Materials Today: Proceedings, 21, 1417–1420.

    Google Scholar 

  32. Torshizian, M. R., Kargarnovin, M. H., & Nasirai, C. (2011). Mode III fracture of an arbitrary oriented crack in two dimensional functionally graded material. Mechanics Research Communications, 38, 164–169.

    Google Scholar 

  33. Zhou, L. M., Meng, G. W., Li, X. L., & Li, F. (2016). Analysis of dynamic fracture parameters in functionally graded material plates with cracks by graded finite element method and virtual crack closure technique. Advances in Materials Science and Engineering, 8085107, 1–14.

    Google Scholar 

  34. Burlayenko, V. N. (2016). Modelling thermal shock in functionally graded plates with finite element method. Advances in Materials Science and Engineering, 7514638, 1–12.

    Google Scholar 

  35. Yildirim, B., Dag, S., & Erdogan, F. (2005). Three dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture, 132, 369–395.

    Google Scholar 

  36. Yildirim, B., & Erdogan, F. (2004). Edge crack problems in homogenous and functionally graded material thermal barrier coatings under uniform thermal loading. Journal of Thermal Stresses, 27, 311–329.

    Google Scholar 

  37. Dag, S., Yildirim, B., & Erdogan, F. (2006). Three dimensional analysis of periodic cracking in FGM coatings under thermal stresses. In CP973, multiscale and functionally graded materials, pp. 676–681.

    Google Scholar 

  38. Ayhan, A. O. (2007). Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 44, 8579–8599.

    Google Scholar 

  39. Ayhan, A. O. (2009). Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures, 46, 796–810.

    Google Scholar 

  40. Kosker, S., Dag, S., & Yildirim, B. (2010). Three dimensional modeling of inclined surface cracks in FGM coatings. Materials Science Forum, 631, 109–114.

    Google Scholar 

  41. Kheirikhah, M. M., & Khalili, S. M. R. (2011). Fracture analysis of semielliptical cracks at the interface of two functionally gradient materials using three-dimensional finite-element method. Proceedings of IMechE 2011, 225, 103–110.

    Google Scholar 

  42. Sabuncuoglu, B., Dag, S., & Yildirim, B. (2012). Three dimensional computational analysis of fatigue crack propagation in functionally graded materials. Computational Materials Science, 52, 246–252.

    Google Scholar 

  43. Sheikhi, J., Poorjamshidian, M., & Peyman, S. (2015). Mixed-mode stress intensity factors for surface cracks in functionally graded materials using enriched finite elements. Journal of Solid Mechanics, 7, 1–12.

    Google Scholar 

  44. Chen, J. (2005). Determination of thermal stress intensity factors for an interface crack in a graded orthotropic coating-substrate structure. International Journal of Fracture, 133, 303–328.

    Google Scholar 

  45. Pathak, H., Singh, A., & Singh, I. V. (2012). Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. International Journal of Mechanics and Materials in Design, 8, 9–36.

    Google Scholar 

  46. Bhattacharya, S., Singh, I. V., & Mishra, B. K. (2013). Fatigue-life estimation of functionally graded materials using XFEM. Engineering with Computers, 29, 427–448.

    Google Scholar 

  47. Gangwar, S., Payak, V., Pathak, V. K., Jamwal, A., & Gupta, P. (2020). Characterization of mechanical and tribological properties of graphite and alumina reinforced zinc alloy (ZA-27) hybrid metal matrix composites. Journal of Composite Materials, 54(30), 4889–4901.

    Article  Google Scholar 

  48. Hosseini, S. S., Bayesteh, H., & Mohammadin, S. (20133). Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Materials Science and Engineering A, 561, 285–302.

    Google Scholar 

  49. Ivanov, I. V., Sadowski, T., & Pietras, D. (2013). Crack propagation in functionally graded strip under thermal shock. The European Physical Journal of Special Topics, 222(7), 1587–1595.

    Google Scholar 

  50. Rokhi, M. M., & Shariati, M. (2013). Coupled thermoelasticity of a functionally graded cracked layer under thermomechanical shocks. Archive Mechanics, 65(2), 71–96.

    Google Scholar 

  51. Golia, E., & Kazemib, M. T. (2014). XFEM modeling of fracture mechanics in transversely isotropic FGMs via interaction integral method. Procedia Materials Science (20th European Conference on Fracture (ECF2014), 3, 1257–1262.

    Google Scholar 

  52. Bhattacharya, S., Singh, I. V., & Mishr, B. K. (2014). Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM. International Journal of Mechanical Sciences, 82, 41–59.

    Google Scholar 

  53. Sharma, K., Bhattacharya, S., Sonkar, V. (2016). XFEM simulation on mixed-mode fatigue crack growth of functionally graded materials. Journal of Mechanical Engineering and Biomechanics, 1(1), 46–55.

    Google Scholar 

  54. Bhattacharya, S., Sharma, K., & Sonkar, V. (2017). Numerical simulation of elastic plastic fatigue crack growth in functionally graded material using the extended finite element method. Mechanics of Advanced Materials and Structures, 24(16), 1367–1380.

    Google Scholar 

  55. Pant, M., Bhattacharya, S. (2017). Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM. International Journal of Computational Methods, 14(1750004), 1–33.

    Google Scholar 

  56. Pant, M., & Bhattacharya, S. (2019). Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM. International Journal of Computational Methods, 14(1), 1–16.

    Google Scholar 

  57. Li, D. H., Yang, X., Qian, R. L., & Xu, D. (2018). Static and dynamic response analysis of functionally graded material plates with damage. Mechanics of Advanced Materials and Structures, 14, 1–14.

    Google Scholar 

  58. Sonkar, V., Bhattacharya, S., & Sharma, K. (2019). A three dimensional fracture analysis of an edge crack using XFEM. Material Science Forum, 969, 315–320.

    Google Scholar 

  59. Fujimoto, T., & Noda, N. (2000). Crack propagation in a functionally graded plate under thermal shock. Archive of Applied Mechanics, 70, 377–386.

    Article  Google Scholar 

  60. Fujimoto, T., & Noda, N. (2001). Two crack growths in a functionally graded plate under thermal shock. Journal of Thermal Stresses, 24, 847–862.

    Google Scholar 

  61. Jamwal, A., Aggarwal, A., Gautam, N., & Devarapalli, A. (2018). Electro-discharge machining: recent developments and trends. International Research Journal of Engineering Technology, 5, 433–448.

    Google Scholar 

  62. Vena, P., Gastaldi, D., & Contro, R. (2005). Effects of the thermal residual stress field on the crack propagation in graded alumina/zirconia ceramics. Functionally graded materials VIII (FGM2004). In Proceedings of the eighth international symposium on multifunctional and functionally graded materials, Materials Science Forum 2005, pp. 492–493, 177–182.

    Google Scholar 

  63. Jamwal, A., Mittal, P., Agrawal, R., Gupta, S., Kumar, D., Sadasivuni, K. K., & Gupta, P. (2020). Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour. Journal of Composite Materials, 54(19), 2635–2649.

    Article  Google Scholar 

  64. Wang, B.-L., & Mai, Y.-W. (2007). On thermal shock behavior of functionally graded materials. Journal of Thermal Stresses, 30, 523–528.

    Google Scholar 

  65. Sohag, M. A. Z., Gupta, P., Kondal, N., Kumar, D., Singh, N., & Jamwal, A. (2020). Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite. Materials Today: Proceedings, 21, 1407–1411.

    Google Scholar 

  66. Hossain, S., Rahman, M. M., Chawla, D., Kumar, A., Seth, P. P., Gupta, P., Kumar, D., Agrawal, R., & Jamwal, A. (2020). Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Materials Today: Proceedings, 21, 1458–1461.

    Google Scholar 

  67. Nayim, S. T. I., Hasan, M. Z., Jamwal, A., Thakur, S., & Gupta, S. (2019, September). Recent trends and developments in optimization and modelling of electro-discharge machining using modern techniques: A review. In AIP Conference Proceedings, 2148(1), 030051.

    Google Scholar 

  68. Jamwal, A., Agrawal, R., & Gupta, P. Application of multi-criteria decision-making techniques in the optimization of mechano-tribological properties of copper-SiC-graphite hybrid metal matrix composites. In Intelligent manufacturing (pp. 149–172). Cham: Springer.

    Google Scholar 

  69. Hossain, S., Rahman, M. M., Jamwal, A., Gupta, P., Thakur, S., & Gupta, S. (2019, September). Processing and characterization of pine epoxy based composites. In AIP Conference Proceedings, 2148(1), 030017.

    Google Scholar 

  70. Zhang, Y., Guo, L., & Noda, N. (2014). Investigation Methods for thermal shock crack problems of functionally graded materials–Part II: Combined analytical-numerical method. Journal of Thermal Stresses, 37, 325–339.

    Google Scholar 

  71. Eshraghi, I., Soltani, N., & Dag, S. (2016). Weight function method for transient thermomechanical fracture analysis of a functionally graded hollow cylinder possessing a circumferential crack. Journal of Thermal Stresses, 39, 1182–1199.

    Google Scholar 

  72. Carpenter, R. D., Paulino, G. H., Munir, Z. A., & Gibeling, J. C. (2000). A novel technique to generate sharp cracks in metallic/ceramic functionally graded materials by reverse 4-point bending. Scripta Material, 43, 547–552.

    Google Scholar 

  73. Moon, R. J., Hoffman, M., Hilden, J., Bowman, K. J., Trumble, K. P., & Rödel, J. (2002). R-curve behavior in alumina–zirconia composites with repeating graded layers. Engineering Fracture Mechanics, 69(14–16), 1647–1665.

    Google Scholar 

  74. Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing and applications. Journal of Materials Research and Technology, 8(5), 4924–4939.

    Article  Google Scholar 

  75. Rousseau, C.-E. (2006). Critical examination of the use of coherent gradient sensing in measuring fracture parameters in functionally graded materials. Journal of Composite Materials, 40, 1763–1782.

    Google Scholar 

  76. Rousseau, C.-E., & Tippur, H. V. (2002) Influence of elastic variations on crack initiation in functionally graded glass-filled epoxy. Engineering Fracture Mechanics, 69, 1679–1693.

    Google Scholar 

  77. Abanto-Bueno, J., & Lambros, J. (2002). Investigation of crack growth in functionally graded materials using digital image correlation. Engineering Fracture Mechanics, 69, 1695–1711.

    Google Scholar 

  78. Abanto-Bueno, J., & Lambros, J. (2006). Parameters controlling fracture resistance in functionally graded materials under mode I loading. International Journal of Solids and Structures, 43, 3920–3939.

    Google Scholar 

  79. Abanto-Bueno, J., & Lambros, J. (2006). An experimental study of mixed mode crack initiation and growth in functionally graded materials. Experimental Mechanics, 46, 179–196.

    Google Scholar 

  80. Bahr, H.-A., Balke, H., Fett, T., Hofinger, I., Kirchhoff, G., Munz, D., Neubrand, A., Semenov, A. S., Weiss, H.-J., & Yang, Y. Y. (2003). Cracks in functionally graded materials. Materials Science and Engineering, A362, 2–16.

    Google Scholar 

  81. Forth, S. C., Favrow, L. H., Keat, W. D., & Newman, J. A. (2003). Three-dimensional mixed-mode fatigue crack growth in a functionally graded titanium alloy. Engineering Fracture Mechanics, 70, 2175–2185.

    Google Scholar 

  82. El-Hadek, M.A., & Tippur, H. V. (2003). Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. International Journal of Solids and Structures, 40, 1885–1906.

    Google Scholar 

  83. Xu, F. M., Zhu, S. J., Zhao, J., Qi, M., Wang, F. G., Li, S. X., & Wang, Z. G. (2004). Effect of stress ratio on fatigue crack propagation in a functionally graded metal matrix composite. Composites Science and Technology, 64, 1795–1803.

    Google Scholar 

  84. Jain, N., & Shukla, A. (2006). Mixed mode dynamic fracture in particulate reinforced functionally graded materials. Experimental Mechanics, 46, 137–154.

    Google Scholar 

  85. Kirugulige, M. S., & Tippur, H. V. (2006). Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Experimental Mechanics, 46, 269–281.

    Google Scholar 

  86. Nayim, S. T. I., Hasan, M. Z., Seth, P. P., Gupta, P., Thakur, S., Kumar, D., & Jamwal, A. (2020). Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Materials Today: Proceedings, 21, 1421–1424.

    Google Scholar 

  87. Jamwal, A., Seth, P. P., Kumar, D., Agrawal, R., Sadasivuni, K. K., & Gupta, P. (2020). Microstructural, tribological and compression behaviour of copper matrix reinforced with Graphite-SiC hybrid composites. Materials Chemistry and Physics, 251, 123090.

    Article  Google Scholar 

  88. Comi, C., & Mariani, S. (2007). Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Computer Methods Applications Mechanics and Engineering, 196, 4013–4026.

    Google Scholar 

  89. Jain, N., & Shukla, A. (2007). Asymptotic analysis and reflection photoelasticity to study transient crack propagation in graded materials. Journal of Mechanics of Materials and Structures, 2, 595–612.

    Google Scholar 

  90. Ulukoy, A., Topcu, M., & Tasgetiren, S. (2016). Experimental investigation of aluminum matrix functionally graded material: Microstructural and hardness analyses, fretting, fatigue, and mechanical properties. Journal of Engineering Tribology, 230(2), 143–155.

    Google Scholar 

  91. Balke, H, Bahr, H.-A., Semenov, A. S., Hofinger, I., Häusler, C., Kirchhoff, G., & Weiss, H.-J. (2000) Graded thermal barrier coatings. Cracking due to laser irradiation and determining of interface toughness. Proceedings of 6th International Symposium on Functionally Graded Materials. Ceramic Transactions, 114, 205–212.

    Google Scholar 

  92. Bandil, K., Vashisth, H., Kumar, S., Verma, L., Jamwal, A., Kumar, D., Singh, N., Sadasivuni, K. K., & Gupta, P. (2019). Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. Journal of Composite Materials, 53(28–30), 4215–4223.

    Article  Google Scholar 

  93. Kawasaki, A., & Watanabe, R. (2002) Thermal fracture behavior of metal/ceramic functionally graded materials. Engineering Fracture Mechanics, 69, 1713–1728.

    Google Scholar 

  94. Rangaraj, S., & Kokini, K. (2003). Estimating the fracture resistance of functionally graded thermal barrier coatings from thermal shock tests. Surface and Coatings Technology, 173, 201–212.

    Google Scholar 

  95. Kokini, K., & Rangaraj, S. V. (2005). Time-dependent behavior and fracture of functionally graded thermal barrier coatings under thermal shock. Materials Science Forum, 2005(492–493), 379–384.

    Google Scholar 

  96. Xiong, H.-P., Kawasaki, A., Kang, Y.-S., & Watanabe, R. (2005). Experimental study on heat insulation performance of functionally graded metal/ceramic coatings and their fracture behavior at high surface temperatures. Surface and Coatings Technology, 194, 203–214.

    Google Scholar 

  97. Lee, W. J., Park, B. G., Park, I. M., Park, Y. H., Oak, J. J., & Kimura, H. (2009). Thermal fatigue cracking and extension behaviors of squeeze infiltrated Al18B4O33/Mg functionally graded materials. Materials Transactions, 50, 864–871.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhandari, M., Purohit, K. (2021). Computational and Experimental Methods to Investigate Fracture Behavior of Functionally Graded Material Structures—A Critical Review. In: Agrawal, R., Jain, J.K., Yadav, V.S., Manupati, V.K., Varela, L. (eds) Recent Advances in Smart Manufacturing and Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3033-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3033-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3032-3

  • Online ISBN: 978-981-16-3033-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics