Skip to main content
Log in

Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The clique partitioning problem (CPP) requires the establishment of an equivalence relation for the vertices of a graph such that the sum of the edge costs associated with the relation is minimized. The CPP has important applications for the social sciences because it provides a framework for clustering objects measured on a collection of nominal or ordinal attributes. In such instances, the CPP incorporates edge costs obtained from an aggregation of binary equivalence relations among the attributes. We review existing theory and methods for the CPP and propose two versions of a new neighborhood search algorithm for efficient solution. The first version (NS-R) uses a relocation algorithm in the search for improved solutions, whereas the second (NS-TS) uses an embedded tabu search routine. The new algorithms are compared to simulated annealing (SA) and tabu search (TS) algorithms from the CPP literature. Although the heuristics yielded comparable results for some test problems, the neighborhood search algorithms generally yielded the best performances for large and difficult instances of the CPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabie, P., Hubert, L., & De Soete, G. (1996). An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 5–64). River Edge: World Scientific.

    Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1981). The median procedure in cluster analysis and social choice theory. Mathematical Social Sciences, 1, 235–267.

    Article  Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1988). The median procedure in data analysis: new results and open problems. In H.H. Bock (Ed.), Classification and related methods in data analysis (pp. 309–316). Amsterdam: North-Holland.

    Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1995). The median procedure for partitions. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19, 3–34.

    Google Scholar 

  • Blake, C.L., & Merz, C.J. (1998). UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html

  • Borda, J.C. (1784). Mèmoire sur les élections au scrutin. Histoire de l’académie royale des sciences pour 1781. Paris.

  • Brusco, M.J., Jacobs, L.W., Bongiorno, R.J., Lyons, D.V., & Tang, B. (1995). Improving personnel scheduling at airline stations. Operations Research, 43, 741–751.

    Article  Google Scholar 

  • Brusco, M.J., & Köhn, H.-F. (2008a). Optimal partitioning of a data set based on the p-median model. Psychometrika, 73, 89–105.

    Article  Google Scholar 

  • Brusco, M.J., & Köhn, H.-F. (2008b). Comment on ‘Clustering by passing messages between data points’. Science, 319, 726.

    Article  PubMed  Google Scholar 

  • Brusco, M.J., & Steinley, D. (2007a). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583–600.

    Article  Google Scholar 

  • Brusco, M.J., & Steinley, D. (2007b). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51, 325–338.

    Article  Google Scholar 

  • Charon, I., & Hudry, O. (2006). Noising methods for a clique partitioning problem. Discrete Applied Mathematics, 154, 754–769.

    Article  Google Scholar 

  • Condorcet, M.J.A.N. (1785). Caritat, marquis de Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris.

  • De Amorim, S.G., Barthélemy, J.-P., & Ribeiro, C.C. (1992). Clustering and clique partitioning: Simulated annealing and tabu search approaches. Journal of Classification, 9, 17–41.

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 1–38.

    Google Scholar 

  • Dorndorf, U., & Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing, 6, 141–153.

    Google Scholar 

  • Forgy, E.W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768.

    Google Scholar 

  • Garcia, C.G., Pérez-Brito, D, Campos, V., & Marti, R. (2006). Variable neighborhood search for the linear ordering problem. Computers and Operations Research, 33, 3549–3565.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1, 190–206.

    Google Scholar 

  • Glover, F. (1990). Tabu search—Part II. ORSA Journal on Computing, 2, 4–32.

    Google Scholar 

  • Gower, J.C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 5, 5–48.

    Article  Google Scholar 

  • Grim, J. (2006). EM cluster analysis for categorical data. In D.-Y. Yeung, J.T. Kwok, A.L.N. Fred, F. Roll, & D. de Ridder (Eds.), Structural, syntactic, and statistical pattern recognition (pp. 640–648). Berlin: Springer.

    Chapter  Google Scholar 

  • Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Mathematical Programming, 45, 59–96.

    Article  Google Scholar 

  • Grötschel, M., & Wakabayashi, Y. (1990). Facets of the clique partitioning polytope. Mathematical Programming, 47, 367–387.

    Article  Google Scholar 

  • Hansen, P., & Mladenović, N. (1997). Variable neighborhood search for the p-median. Location Science, 5, 207–226.

    Article  Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). J-Means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405–413.

    Article  Google Scholar 

  • Hartigan, J.A. (1975). Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hartigan, J.A., & Wong, M.A. (1979). Algorithm AS136: a K-means clustering program. Applied Statistics, 28(1), 100–108.

    Article  Google Scholar 

  • ILOG (1999). ILOG CPLEX 6.5 User’s manual. Mountain View, CA: Author.

  • Jacobs, L.W., & Brusco, M.J. (1995). Note: A local-search heuristic for large set-covering problems. Naval Research Logistics, 42, 1129–1140.

    Article  Google Scholar 

  • Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Article  PubMed  Google Scholar 

  • Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data: an introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  • Kemeny, J.G. (1959). Mathematics without numbers. Daedalus, 88, 577–591.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  PubMed  Google Scholar 

  • Klastorin, T. (1985). The p-median problem for cluster analysis: a comparative test using the mixture model approach. Management Science, 31, 84–95.

    Article  Google Scholar 

  • Kochenberger, G., Glover, F., Alidaee, B., & Wang, H. (2005). Clustering of microarray data via clique partitioning. Journal of Combinatorial Optimization, 10, 77–92.

    Article  Google Scholar 

  • MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. In L.M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). Berkeley: University of California Press.

    Google Scholar 

  • Marcotorchino, J.-F. (1981). Agrégation des similarités en classification automatique. Thèse d’Etat, Université Paris VI.

  • Marcotorchino, F., & Michaud, P. (1981). Heuristic approach to the similarity aggregation problem. Methods of Operations Research, 43, 395–404.

    Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Book  Google Scholar 

  • Mehrotra, A., & Trick, M. (1998). Cliques and clustering: a combinatorial approach. Operations Research Letters, 22, 1–12.

    Article  Google Scholar 

  • Michaud, P., & Marcotorchino, J.-F. (1980). Optimisation en analyse des donneés relationnelles. In E. Diday (Eds.), Data analysis and informatics (pp. 655–670). Berlin: Springer.

    Google Scholar 

  • Mirkin, B.G. (1974). The problems of approximation in space of relations and qualitative data analysis. Information and Remote Control, 35, 1424–1431.

    Google Scholar 

  • Mirkin, B.G. (1979). Group choice. New York: Wiley.

    Google Scholar 

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24, 1097–1100.

    Article  Google Scholar 

  • Oosten, M., Rutten, J., & Spieksma, F. (2001). The clique partitioning problem: facets and patching facets. Networks, 38, 209–226.

    Article  Google Scholar 

  • Opitz, O., & Schader, M. (1984a). Analyse qualitativer Daten: Einführung und Übersicht. Teil 1. OR Spektrum, 6, 67–83. Analysis of qualitative data: Introduction and survey. Part 1.

    Article  Google Scholar 

  • Opitz, O., & Schader, M. (1984b). Analyse qualitativer Daten: Einführung und Übersicht. Teil 2. OR Spektrum, 6, 133–140. Analysis of qualitative data: Introduction and survey. Part 2.

    Article  Google Scholar 

  • Pacheco, J., & Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43, 235–248.

    Google Scholar 

  • Palubeckis, G. (1997). A branch-and-bound approach using polyhedral results for a clustering problem. INFORMS Journal on Computing, 9, 30–42.

    Article  Google Scholar 

  • Règnier, S. (1965). Sur quelques aspects mathématiques des problèmes de classification automatique. I.C.C. Bulletin, 4, 175–191.

    Google Scholar 

  • Schader, M., & Tüshaus, U. (1985). Ein Subgradientenverfahren zur Klassifikation qualitativer Daten. OR Spektrum, 7, 1–15. A subgradient procedure for classifying qualitative data.

    Article  Google Scholar 

  • Tüshaus, U. (1983). Aggregation binärer Relationen in der qualitativen Datenanalyse. Königsstein: Athenäum. Aggregation of binary relations in qualitative data analysis.

    Google Scholar 

  • Vescia, G. (1985). Descriptive classification of cetacea: whales, porpoises and dolphins. In J.-F. Marcotorchino, J.M. Proth, & J. Janssen (Eds.), Data analysis in real life environment: ins and outs of solving problems (pp. 7–24). Amsterdam: Elsevier.

    Google Scholar 

  • Wakabayashi, Y. (1986). Aggregation of binary relations: algorithmic and polyhedral investigations. PhD Thesis, Universität Augsburg, Germany.

  • Wakabayashi, Y. (1998). The complexity of computing medians of relations. IME-USP, 3, 323–349.

    Google Scholar 

  • Wang, H., Obremski, T., Alidaee, B., & Kochenberger, G. (2008). Clique partitioning for clustering: a comparison with K-means and latent class analysis. Communications in Statistics—Simulation and Computation, 37, 1–13.

    Article  Google Scholar 

  • Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Zahn, C.T. (1964). Approximating symmetric relations by equivalence relations. SIAM Journal on Applied Mathematics, 12, 840–847.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Brusco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusco, M.J., Köhn, HF. Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem. Psychometrika 74, 685–703 (2009). https://doi.org/10.1007/s11336-009-9126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-009-9126-z

Keywords

Navigation