Skip to main content
Log in

The impacts of an eight-week moderate aerobic exercise training on some gene expression involved in cholesterol metabolism in ovariectomized rats

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Estrogen depletion in postmenopausal women and animal models of ovariectomy is associated with some undesirable alternations in lipid metabolism, the adverse impacts of which could be improved through regular exercise training; however, molecular mechanisms underlying this process are not fully understood. In this study, the impacts of an 8-week moderate aerobic exercise training on plasma lipid profile, liver enzymes, and some gene expression involved in cholesterol metabolism were investigated in ovariectomized rats.

Methods

Forty female Wistar rats were randomly divided into four groups including sham-control, exercise training, ovariectomized-control (OVX), and ovariectomized + Exercise training (OVX + E). Three weeks after ovariectomy, the animals began their training on the treadmill (25 m/min, 5 sessions/week) for 8 weeks. The hepatic expression of Fansoid X receptor (FXR), Cholesterol-1-alphahydroxylase 1 (CYP7A1), and Small heterodimeric protein (SHP) along with lipid profile and liver enzymes were assessed.

Result

The hepatic expression of FXR, CYP7A1 and SHP genes were down-regulated in OVX rats compared to the exercise group. The levels of triglyceride (TG) and total cholesterol (TC) were significantly increased in OVX and OVX + E rats in comparison to sham and exercise groups. The levels of liver enzymes were also increased in OVX rats. However, exercise did not alter liver enzymes, despite a decrease in total cholesterol in OVX rats.

Conclusion

Although ovariectomy could down-regulate the hepatic gene expressions involved in cholesterol metabolism, our exercise protocol could not alter the expression of these genes in OVX rats. These effects may occur due to other variables such as some regulatory mechanisms which are not the subject of the present research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ET:

Exercise training

TG:

Triglycerides

TC:

Total cholesterol

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

ALT:

Alanine aminotransferase

AST:

Aminotransferase

FXR:

Farnesoid-X-receptor

SHP:

Small heterodimer partner

CYP7A1:

Cholesterol 7 alpha-hydroxylase

OVX:

Ovariectomy

References

  1. Wasalathanthri S (2015) Menopause and exercise: linking pathophysiology to effects. Arch Med 28:1–7

    Google Scholar 

  2. Kim C, Randolph JF, Golden SH, Labrie F, Kong S, Nan B, Barrett-Connor E (2015) Weight loss decreases follicle stimulating hormone in overweight postmenopausal women. Obesity 23(1):228–233

    Article  CAS  PubMed  Google Scholar 

  3. Si H, Komatsu Y, Murayama A, Steffensen KR, Nakagawa Y, Nakajima Y, Suzuki M, Oie S, Parini P, Vedin LL (2014) Estrogen receptor ligands ameliorate fatty liver through a nonclassical estrogen receptor/Liver X receptor pathway in mice. Hepatology 59(5):1791–1802

    Article  Google Scholar 

  4. Davis SR, Santoro N, Lambrinoudaki I, Lumsden M, Mishra GD, Pal L, Rees M, Simoncini T (2015) Authors’ reply: communicating evidence-based practice in menopause. Nature Rev Dis Primers 1(1):1–1

    Google Scholar 

  5. Carulli L, Lonardo A, Lombardini S, Marchesini G, Loria P (2006) Gender, fatty liver and GGT. Hepatology 44(1):278–279

    Article  PubMed  Google Scholar 

  6. Lee J, Goldberg IJ (2008) Hypertriglyceridemia-induced pancreatitis created by oral estrogen and in vitro fertilization ovulation induction. J Clin Lipidol 2(1):63–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li T, Chiang JY (2009) Regulation of bile acid and cholesterol metabolism by PPARs. PPAR research, USA

    Book  Google Scholar 

  8. van der Velde AE, Vrins CL, van den Oever K, Seemann I, Oude Elferink RP, van Eck M, Kuipers F, Groen AK (2008) Regulation of direct transintestinal cholesterol excretion in mice. Am J Physiol Gastro Liver Physiol 295(1):G203–G208

    Article  Google Scholar 

  9. Ko S-H, Kim H-S (2020) Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 12(1):202

    Article  CAS  PubMed Central  Google Scholar 

  10. Chiang JY, Ferrell JM (2018) Bile acid metabolism in liver pathobiology. Gene Express J Liver Res 18(2):71–87

    Article  CAS  Google Scholar 

  11. Lavoie J-M, Pighon A (2011) NAFLD, estrogens, and physical exercise: the animal model. J Nutr Metab 2:12–20

    Google Scholar 

  12. Palmisano BT, Zhu L, Stafford JM (2017) Role of estrogens in the regulation of liver lipid metabolism. In: Sex and gender factors affecting metabolic homeostasis, diabetes and obesity. Springer, London

    Book  Google Scholar 

  13. Panchal SK, Brown L (2010) Rodent models for metabolic syndrome research. BioMed Research International, Hindawi

    Google Scholar 

  14. Pósa A, Szabó R, Kupai K, Csonka A, Szalai Z, Veszelka M, Török S, Daruka L, Varga C (2015) Exercise training and calorie restriction influence the metabolic parameters in ovariectomized female rats. Oxidative Med Cell Long.

  15. Buniam J, Chukijrungroat N, Khamphaya T, Weerachayaphorn J, Saengsirisuwan V (2019) Estrogen and voluntary exercise attenuate cardiometabolic syndrome and hepatic steatosis in ovariectomized rats fed a high-fat high-fructose diet. Am J Physiol Endocrinol Metab 316(5):E908–E921

    Article  CAS  PubMed  Google Scholar 

  16. Kato M, Ogawa H, Kishida T, Ebihara K (2009) The mechanism of the cholesterol-lowering effect of water-insoluble fish protein in ovariectomised rats. Br J Nutr 102(6):816–824

    Article  CAS  PubMed  Google Scholar 

  17. Kamada Y, Kiso S, Yoshida Y, Chatani N, Kizu T, Hamano M, Tsubakio M, Takemura T, Ezaki H, Hayashi N (2011) Estrogen deficiency worsens steatohepatitis in mice fed high-fat and high-cholesterol diet. Am J Physiol Gastro Liver Physiol 301(6):G1031–G1043

    Article  CAS  Google Scholar 

  18. Sock EN, Cote I, Mentor J (2013) Ovariectomy stimulates hepatic fat and cholesterol accumulation in high-fat diet-fed rats. Horm Metab Res 45(04):283–290

    CAS  Google Scholar 

  19. Côté I, Chapados NA, Lavoie J-M (2014) Impaired VLDL assembly: a novel mechanism contributing to hepatic lipid accumulation following ovariectomy and high-fat/high-cholesterol diets? Br J Nutr 112(10):1592–1600

    Article  PubMed  Google Scholar 

  20. Pighon A, Gutkowska J, Jankowski M, Rabasa-Lhoret R, Lavoie J-M (2011) Exercise training in ovariectomized rats stimulates estrogenic-like effects on expression of genes involved in lipid accumulation and subclinical inflammation in liver. Metabolism 60(5):629–639

    Article  CAS  PubMed  Google Scholar 

  21. Farahnak Z, Tomaz LM, Bergeron R, Chapados N, Lavoie J-M (2017) The effect of exercise training on upregulation of molecular markers of bile acid metabolism in the liver of ovariectomized rats fed a cholesterol-rich diet. ARYA Atheroscl 13(4):184

    Google Scholar 

  22. Côté I, Sock ETN, Lévy É, Lavoie J-M (2013) An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. Eur J Nutr 52(5):1523–1532

    Article  PubMed  Google Scholar 

  23. Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H (2019) Effects of exercise on reverse cholesterol transport: a systemized narrative review of animal studies. Life Sci 224:139–148

    Article  CAS  PubMed  Google Scholar 

  24. Lavoie J-M (2016) Dynamics of hepatic and intestinal cholesterol and bile acid pathways: the impact of the animal model of estrogen deficiency and exercise training. World J Hepatol 8(23):961

    Article  PubMed  PubMed Central  Google Scholar 

  25. Edwards PA, Kast HR, Anisfeld AM (2002) BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res 43(1):2–12

    Article  CAS  PubMed  Google Scholar 

  26. Modica S, Petruzzelli M, Bellafante E, Murzilli S, Salvatore L, Celli N, Di Tullio G, Palasciano G, Moustafa T, Halilbasic E (2012) Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 142(2):355–365

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Lu Y, Wang E, Zhang Z, Xiong X, Zhang H, Lu J, Zheng S, Yang J, Xia X (2015) Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner. J Hepatol 63(1):183–190

    Article  CAS  PubMed  Google Scholar 

  28. Ghanbari-Niaki A, Saeidi A, Gharahcholo L, Moradi-Dehbaghi K, Zare-Kookandeh N, Ahmadian M, Zouhal H, Hackney A (2020) Influence of resistance training and herbal supplementation on plasma apelin and metabolic syndrome risk factors in postmenopausal women. Sci Sports 35(2):109–e1

    Article  Google Scholar 

  29. Devries MC, Samjoo IA, Hamadeh MJ, Tarnopolsky MA (2008) Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity 16(10):2281–2288

    Article  CAS  PubMed  Google Scholar 

  30. Ebrahimi M, Fathi R, Pirsaraei ZA, Garakani ET, Najafi M (2018) How high-fat diet and high-intensity interval training affects lipid metabolism in the liver and visceral adipose tissue of rats. Compar Exerc Physiol 14(1):55–62

    Article  Google Scholar 

  31. Codella R, Lanzoni G, Zoso A, Caumo A, Montesano A, Terruzzi IM, Ricordi C, Luzi L, Inverardi L (2015) Moderate intensity training impact on the inflammatory status and glycemic profiles in NOD mice. J Diabet Res 2:140–165

    Google Scholar 

  32. Nazari M, Minasian V, Hovsepian S (2020) Effects of two types of moderate-and high-intensity interval training on serum salusin-α and Salusin-β levels and lipid profile in women with overweight/obesity. Diabet Metab Syndr Obes Targets Thera 13:1385

    Article  CAS  Google Scholar 

  33. Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Elnegamy TE, Soliman GS, Ibrahim AA (2020) Effects of high-intensity interval and moderate-intensity continuous aerobic exercise on diabetic obese patients with nonalcoholic fatty liver disease: a comparative randomized controlled trial. Medicine 99(10):e19471

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robertson MC, Owens RE, Klindt J, Friesen HG (1984) Ovariectomy leads to a rapid increase in rat placental lactogen secretion. Endocrinology 114(5):1805–1811

    Article  CAS  PubMed  Google Scholar 

  35. Ghanbari-Niaki A, Abednazari H, Tayebi SM, Hossaini-Kakhak A, Kraemer RR (2009) Treadmill training enhances rat agouti-related protein in plasma and reduces ghrelin levels in plasma and soleus muscle. Metabolism 58(12):1747–1752

    Article  CAS  PubMed  Google Scholar 

  36. Hao L, Wang Y, Duan Y, Bu S (2010) Effects of treadmill exercise training on liver fat accumulation and estrogen receptor alpha expression in intact and ovariectomized rats with or without estrogen replacement treatment. Eur J Appl Physiol 109(5):879–886

    Article  CAS  PubMed  Google Scholar 

  37. Shinoda M, Latour M, Lavoie J (2002) Effects of physical training on body composition and organ weights in ovariectomized and hyperestrogenic rats. Internat J Obesity 26(3):335–343

    Article  CAS  Google Scholar 

  38. Lai K, Harnish DC, Evans MJ (2003) Estrogen receptor α regulates expression of the orphan receptor small heterodimer partner. J Biol Chem 278(38):36418–36429

    Article  CAS  PubMed  Google Scholar 

  39. Veloso AGB, Lima NEA, de Marco OE, Cardoso CG, Marques MR, Reis BdCAA, Fonseca FLA, Maifrino LBM (2018) Effects of moderate exercise on biochemical, morphological, and physiological parameters of the pancreas of female mice with estrogen deprivation and dyslipidemia. Med Mole Morphol 51(2):118–127

    Article  CAS  Google Scholar 

  40. Haddock BL, Hopp HP, Mason JJ, Blix G, Blair SN (1998) Cardiorespiratory fitness and cardiovascular disease risk factors in postmenopausal women. Med Sci Sports Exerc 30(6):893–898

    CAS  PubMed  Google Scholar 

  41. Burneiko RC, Diniz YS, Galhardi CM, Rodrigues HG, Ebaid GM, Faine LA, Padovani CR, Cicogna AC, Novelli EL (2006) Interaction of hypercaloric diet and physical exercise on lipid profile, oxidative stress and antioxidant defenses. Food Chem Toxicol 44(7):1167–1172

    Article  CAS  PubMed  Google Scholar 

  42. Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y (2004) Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism 53(7):942–948

    Article  CAS  PubMed  Google Scholar 

  43. Mohanka M, Irwin M, Heckbert SR, Yasui Y, Sorensen B, Chubak J, Tworoger SS, Ulrich CM, McTiernan A (2006) Serum lipoproteins in overweight/obese postmenopausal women: a one-year exercise trial. Med Sci Sports Exerc 38(2):231–239

    Article  CAS  PubMed  Google Scholar 

  44. Saengsirisuwan V, Pongseeda S, Prasannarong M, Vichaiwong K, Toskulkao C (2009) Modulation of insulin resistance in ovariectomized rats by endurance exercise training and estrogen replacement. Metabolism 58(1):38–47

    Article  CAS  PubMed  Google Scholar 

  45. Kazeminasab F, Marandi M, Ghaedi K, Esfarjani F, Moshtaghian J (2013) Endurance training enhances LXRα gene expression in Wistar male rats. Eur J Appl Physiol 113(9):2285–2290

    Article  CAS  PubMed  Google Scholar 

  46. Sock EN, Chapados N, Lavoie J-M (2014) LDL receptor and Pcsk9 transcripts are decreased in the liver of ovariectomized rats: effects of exercise training. Horm Metab Res 46(08):550–555

    Article  Google Scholar 

  47. Sankar P, Bobby Z, Sridhar M (2019) Soy isoflavones (Glycine max) attenuates bilateral ovariectomy (experimental menopause) induced alteration in the hepatic and renal metabolic functions in female Wistar rats. Clin Invest 9(2):65–73

    Google Scholar 

  48. Baidal JAW, Lavine JE (2016) The intersection of nonalcoholic fatty liver disease and obesity. Sci trans med 8(323):323rv321–323rv321

    Google Scholar 

  49. Pavletic AJ, Wright ME (2015) Exercise-induced elevation of liver enzymes in a healthy female research volunteer. Psychosomatics 56(5):604

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pinto PR, Rocco DDFM, Okuda LS, Machado-Lima A, Castilho G, da Silva KS, Gomes DJ, de Souza PR, Iborra RT, da Silva FG (2015) Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis 14(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gadaleta RM, Cariello M, Sabbà C, Moschetta A (2015) Tissue-specific actions of FXR in metabolism and cancer Molecular and cell biology of lipids.

  52. Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, Shan B, Russell DW, Schwarz M (2002) Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2(6):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci 98(6):3375–3380

    Article  CAS  PubMed  Google Scholar 

  54. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci 98(6):3369–3374

    Article  CAS  PubMed  Google Scholar 

  55. Meissner M, Lombardo E, Havinga R, Tietge UJ, Kuipers F, Groen AK (2011) Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218(2):323–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to the University of Mazandaran, Babolsar, Iran for sponsoring this study.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozita Fathi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

All steps of the study were carried out in accordance with “Guiding Principles for the Care and Use of Research Animals” approved by the Ethical Committee of University of Mazandaran.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamian Rostami, M., Fathi, R. & Nasiri, K. The impacts of an eight-week moderate aerobic exercise training on some gene expression involved in cholesterol metabolism in ovariectomized rats. Sport Sci Health 17, 383–392 (2021). https://doi.org/10.1007/s11332-020-00701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00701-y

Keywords

Navigation