Skip to main content
Log in

Peculiarities of clinical profile of snoring and mild to moderate obstructive sleep apnea–hypopnea syndrome patients

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to perform comprehensive evaluation of the snoring and mild to moderate obstructive sleep apnea–hypopnea syndrome (OSAHS) patients for their anatomical, functional, and psychoemotional clinical properties.

Methods

Seventy-four snoring patients, aged 24 to 64 (mean 41.83 ± 11.01) years underwent full-night polysomnography, nasopharyngoscopy, and Mueller maneuver. Clinical tests battery consisting of visual analogue scales (VAS) scales, Lithuanian version of Sleep Apnea Quality of Life Index (SAQLI-LT), Spielberg’s State-Trait Anxiety Inventory (STAI), Beck Depression Inventory—Second Edition (BDI-II), and Epworth Sleepiness Scale (ESS) were applied to assess their distinctive clinical properties.

Results

The total group of snoring and mild to moderate OSAHS patients presented with considerably enlarged VAS snoring and daytime sleepiness scores (mean 66.32 ± 19.07 and 35.03 ± 27.83 points), mild BDI-II scores (mean 10.96 ± 9.42 points), and moderate trait anxiety scores (mean 41.51 ± 8.62 points). All the scores of daytime complaints measured with the VAS correlated statistically significantly with the mean scores of the ESS, SAQLI-LT, trait anxiety, and BDI-II. Both groups, of snoring and mild to moderate OSAHS patients, indicated similar intensity of the major complaints according to the VAS, same as similar BDI-II, STAI, and SAQLI-LT scores. A higher Friedman’s score of palatal tonsils was found in the group of snoring patients, comparing to that of the group of mild to moderate OSAHS patients (p < 0.05).

Conclusions

Snoring and mild to moderate OSAHS patients have resemblances in their distinctive anatomical and clinical properties. This group of the patients revealed mild depression and moderate trait anxiety scores when measured with the BDI-II and STAI, which correlated significantly with the severity of the patients’ daytime complaints measured with the VAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cirignotta F (2004) Classification and definition of respiratory disorders during sleep. Minerva Med 95:177–185

    PubMed  CAS  Google Scholar 

  2. Friedman M, Tanyeri H, La Rosa M, Landsberg R, Vaidyanathan K, Pieri S, Caldarelli D (1999) Clinical predictors of obstructive sleep apnea. Laryngoscope 109:1901–1907

    Article  PubMed  CAS  Google Scholar 

  3. Hans MG, Nelson S, Pracharktam N, Baek SJ, Strohl K, Redline S (2001) Subgrouping persons with snoring and/or apnea by using anthropometric and cephalometric measures. Sleep Breath 5(2):79–91

    Article  PubMed  CAS  Google Scholar 

  4. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235

    Article  PubMed  CAS  Google Scholar 

  5. Cakirer B, Hans MG, Graham G, Aylor J, Tishler PV, Redline S (2001) The relationship between craniofacial morphology and obstructive sleep apnea in whites and in African-Americans. Am J Respir Crit Care Med 163(4):947–950

    PubMed  CAS  Google Scholar 

  6. Eckert DJ, Malhotra A (2008) Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:144–153

    Article  PubMed  Google Scholar 

  7. Hochban W, Ehlenz K, Conradt R, Brandenburg U (1999) Obstructive sleep apnoea in acromegaly: the role of craniofacial changes. Eur Respir J 14(1):196–202

    Article  PubMed  CAS  Google Scholar 

  8. West SD, Nicoll DJ, Stradling JR (2006) Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax 61:945–950

    Article  PubMed  CAS  Google Scholar 

  9. American Academy of Sleep Medicine Task Force (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definitions and measurement techniques in clinical research. Sleep 22:667–689

    Google Scholar 

  10. Herzog M, Kuhnel T, Bremert T, Herzog B, Hosemann V, Kaftan H (2009) The upper airway in sleep-disordered breathing: a clinical prediction model. Laryngoscope 119:765–773

    Article  PubMed  Google Scholar 

  11. Montoya FS, Bedialauneta JR, Larracoechea UA, Ibarguen AM, DelRey AS, Fernandez JMS (2007) The predictive value of clinical and epidemiological parameters of the identification of patients with obstructive sleep apnea (OSA): a clinical prediction algorithm in the evaluation of OSA. Eur Arch Otorhinolaryngol 264:637–643

    Article  Google Scholar 

  12. Nuckton TJ, Glidden DV, Browne WS, Claman DM (2006) Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep 29:903–908

    PubMed  Google Scholar 

  13. Khoo SM, Poh HK, Chan YH, Ngerng WJ, Shi DX, Lim TK (2010) Diagnostic characteristics of clinical prediction models for obstructive sleep apnea in different clinic populations. Sleep Breath. doi:10.1007/s11325-010-0354-3

  14. Grant S, Aitchison T, Henderson E, Christie J, Zare S, McMurray J, Dargie HA (1999) Comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest 116(5):1208–1217

    Article  PubMed  CAS  Google Scholar 

  15. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep 14:540–545

    PubMed  CAS  Google Scholar 

  16. Spielberger CD (1983) Manual for the state-trait anxiety inventory (STAI). Consulting Psychologists Press, Palo Alto

    Google Scholar 

  17. Beck AT, Brown GK, Steer RA (1996) Beck depression inventory-II (BDI-II). The Psychological Corporation, San Antonio

    Google Scholar 

  18. Beck AT, Steer RA (1984) Internal consistencies of the original and revised Beck depression inventory. J Clin Psychol 40(6):1365–1367

    Article  PubMed  CAS  Google Scholar 

  19. Uloza V, Balsevicius T, Sakalauskas R, Miliauskas S, Žemaitienė N (2009) Changes in emotional state of snoring and obstructive sleep apnea patients following radiofrequency tissue ablation. Eur Arch Otorhinolaringol 266:1469–1473

    Article  Google Scholar 

  20. Uloza V, Balsevicius T, Sakalauskas R, Miliauskas S, Žemaitienė N (2010) Changes in emotional state of bed partners of snoring and obstructive sleep apnea patients following radiofrequency tissue ablation: a pilot study. Sleep Breath 14(2):125–130

    Article  PubMed  Google Scholar 

  21. Balsevicius T, Uloza V, Sakalauskas R, Miliauskas S, Reklaitienė R, Bacevičienė M (2008) Psychometric properties of the Lithuanian version of sleep apnea quality of life index (a pilot study). Medicina (Kaunas) 44(4):296–301

    Google Scholar 

  22. Flemons WW, Reimer MA (1998) Development of a disease-specific health-related quality of life questionnaire for sleep apnea. Am J Respir Crit Care Med 158(2):494–503

    PubMed  CAS  Google Scholar 

  23. Shiffman S, Reinolds M, Young F (1981) Introduction to multidimensional scaling: theory, methods and applications. Academic, New York

    Google Scholar 

  24. McNicholas WT (1988) Respiratory disorders during sleep. European Respiratory Society Journals, Sheffield

    Google Scholar 

  25. Lofaso F, Coste A, d’Ortho MP, Zerah-Lancner F, Delclaux C, Goldenberg F et al (2000) Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur Respir J 16:639–643

    Article  PubMed  CAS  Google Scholar 

  26. Fogel RB, Malhotra A, White DP (2004) Pathophysiology of obstructive sleep apnoea/hypopnoea syndrome. Thorax 59(2):159–163

    Article  PubMed  CAS  Google Scholar 

  27. Gislason T, Almqvist M, Eriksson G, Taube A, Boman G (1988) Prevalence of sleep apnea among Swedish men: an epidemiological study. J Clin Endocrinol 41:571–576

    CAS  Google Scholar 

  28. Kramer MF, De La Chaux R, Dreher A, Pfrogner E, Rasp G (2001) Allergic rhinitis does not constitute a risk factor for obstructive sleep apnea syndrome. Acta Otolaryngol 121:494–499

    Article  PubMed  CAS  Google Scholar 

  29. Hoffstein V, Mateika S, Metes A (1993) Effect of nasal dilation on snoring and apneas during different stages of sleep. Sleep 16:360–365

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Balsevičius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balsevičius, T., Uloza, V., Sakalauskas, R. et al. Peculiarities of clinical profile of snoring and mild to moderate obstructive sleep apnea–hypopnea syndrome patients. Sleep Breath 16, 835–843 (2012). https://doi.org/10.1007/s11325-011-0584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-011-0584-z

Keywords

Navigation