Skip to main content
Log in

Investigation of Image Reconstruction Parameters of the Mediso nanoScan PC Small-Animal PET/CT Scanner for Two Different Positron Emitters Under NEMA NU 4-2008 Standards

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and Ga-68, under the NEMA NU 4-2008 standards.

Procedures

Various image quality metrics were calculated for different realizations of [18F]FDG and Ga-68 filled image quality (IQ) phantoms.

Results

[18F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level.

Conclusion

A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Yamamoto S, Watabe H, Kanai Y et al (2013) Development of an ultrahigh resolution Si-PM-based PET system for small animals. Phys Med Biol 58:7875–7888

    Article  PubMed  Google Scholar 

  2. Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54:18125–11832

    Article  Google Scholar 

  3. Wang Y, Seidel B, Tsui BMW et al (2006) Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900

    PubMed  Google Scholar 

  4. Visser EP, Disselhorst JA, Brom M et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147

    Article  PubMed  Google Scholar 

  5. Lasnon C, Dugué AE, Briand M et al (2015) Quantifying and correcting for tail vein extravasation in small animal PET scans in cancer research: is there an impact on therapy assessment? Eur J Nucl Med Mol Imaging Res 5:61

    Google Scholar 

  6. Ferrari C, Asabella AN, Villano C et al (2015) Copper-64 dichloride as theranostic agent for glioblastoma multiform: a preclinical study. Biomed Res Int. doi:10.1155/2015/129764

    Google Scholar 

  7. Maschauer S, Gahr S, Gandesiri M et al (2016) In vivo monitoring of the anti-angiogenic therapeutic effect of the pan-deacetylase inhibitor panobinostatby small animal PET in a mouse model of gastrointestinal cancers. Nucl Med Biol 43:27–34

    Article  CAS  PubMed  Google Scholar 

  8. Kim DY, Kim HS, Reder S et al (2015) Comparison of 18F-labeled fluoroalkyphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging. J Nucl Med 56:1581–1586

    Article  CAS  PubMed  Google Scholar 

  9. Thackeray JT, Bankstahl JP, Bengel FM (2015) Impact of image-derived input function and fit time intervals on Patlak quantification of myocardial glucose uptake in mice. J Nucl Med 56:1615–1621

    Article  CAS  PubMed  Google Scholar 

  10. Mateo J, Bilbao I, Vaquero JJ et al (2015) In vivo 18F-FDG-PET imaging in mouse atherosclerosis. Methods Mol Biol 1339:377–386

    Article  CAS  PubMed  Google Scholar 

  11. Deruyver Y, Rietjens R, Franken J et al (2015) (18F)FDG-PET brain imaging during the micturition cycle in rats detects regions involved in bladder afferent signaling. Eur J Nucl Med Mol Iimaging Res 5:55

    Google Scholar 

  12. Wenzel B, Mollitor J, Deuther-Conrad W et al (2016) Development of a novel nonpeptidic 18F-labeled radiotracer for in vivo imaging of oxytocin receptors with positron emission tomography. J Med Chem 59:1800–1817

    Article  CAS  PubMed  Google Scholar 

  13. Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617

    Article  PubMed  Google Scholar 

  14. Goetzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309

    Article  Google Scholar 

  15. Hulsman MC, Reder S, Weber AW et al (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34:532–540

    Article  Google Scholar 

  16. Magota K, Kubo N, Kuge Y et al (2011) Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging 38:742–752

    Article  PubMed  Google Scholar 

  17. Cañadas M, Romero Sanz E, et al. (2010) Performance evaluation for 68Ga and 18F of the ARGUS small-animal PET scanner based on the NEMA NU-4 standard, IEEE Nuclear Science Symposium Conference & Medical Imaging Conference, Knoxville TN, pp. 3454–3457.

  18. Visser EP, Disselhorst JA, van Lier MGJTB et al (2011) Characterization and optimization of image quality as a function of reconstruction algorithms and parameter settings in a Siemens Inveon small-animal PET scanner using the NEMA NU 4-2008 standards. NuclInstr Meth Phys Res A 629:357–367

    Article  CAS  Google Scholar 

  19. M. Magdics, B. Tóth, B. Kovács, et al. (2011) Total variation regularization in PET reconstruction, Képfeldolgozók és Alakfelismerók VIII. Konferenciája. Szeged.

  20. Panin VY, Zeng GL, Gullberg GT (1999) Total variation regulated EM algorithm. IEEE TNS 46:2202–2210

    Google Scholar 

  21. Persson M, Bone D, Elmqvist H (2001) Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography. Phys Med Biol 46:853–866

    Article  CAS  PubMed  Google Scholar 

  22. Magdics M, Szirmay-Kalos L, Szlavecz A, et al. (2010) TeraTomo project: a fully 3D GPU based reconstruction code for exploiting the imaging capability of the NanoPET™/CT system. Mol Imaging Biol 12

  23. National Electrical Manufacturers Association (NEMA) (2008) Performance measurements for small animal positron emission tomographs (PETs). NEMA Standards Publication NU 4-2008. Rosslyn, VA: NEMA.

  24. Bradshaw TJ, Voorbach MJ, Reuter DR et al (2015) Image quality of Zr-89 PET imaging in the Siemens microPET Focus 220 preclinical scanner. Mol Imaging Biol 18:377–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Gaitanis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaitanis, A., Kastis, G.A., Vlastou, E. et al. Investigation of Image Reconstruction Parameters of the Mediso nanoScan PC Small-Animal PET/CT Scanner for Two Different Positron Emitters Under NEMA NU 4-2008 Standards. Mol Imaging Biol 19, 550–559 (2017). https://doi.org/10.1007/s11307-016-1035-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1035-9

Key words

Navigation