Skip to main content
Log in

Image quality of Zr-89 PET imaging in the Siemens microPET Focus 220 preclinical scanner

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Zr-89 positron emission tomography (PET) is a valuable tool for understanding the biodistribution and pharmacokinetics of antibody-based therapeutics. We compared the image quality of Zr-89 PET and F-18 PET in the Siemens microPET Focus 220 preclinical scanner using different reconstruction methods.

Procedures

Image quality metrics were measured in various Zr-89 and F-18 PET phantoms, including the NEMA NU 4-2008 image quality phantom. Images were reconstructed using various algorithms.

Results

Zr-89 PET had greater image noise, inferior spatial resolution, and greater spillover than F-18 PET, but comparable recovery coefficients for cylinders of various diameters. Of the reconstruction methods, OSEM3D resulted in the lowest noise, highest recovery coefficients, best spatial resolution, but also the greatest spillover. Scatter correction results were found to be sensitive to varying object sizes.

Conclusions

Zr-89 PET image quality was inferior to that of F-18, and no single reconstruction method was superior in all aspects of image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  2. Fowler JS, Volkow ND, Wang GJ et al (1999) PET and drug research and development. J Nucl Med 40:1154–1163

    CAS  PubMed  Google Scholar 

  3. van Meer PJ, Kooijman M, van der Laan JW et al (2013) The value of non-human primates in the development of monoclonal antibodies. Nat Biotechnol 31:882–883

    Article  PubMed  Google Scholar 

  4. Wu AM, Olafsen T (2008) Antibodies for molecular imaging of cancer. Cancer J 14:191–197

    Article  CAS  PubMed  Google Scholar 

  5. Knowles SM, Wu AM (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30:3884–3892

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deri MA, Zeglis BM, Francesconi LC, Lewis JS (2013) PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol 40:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the siemens inveon small-animal PET scanner. J Nucl Med 51:610–617

    Article  PubMed  Google Scholar 

  8. Bai B, Ruangma A, Laforest R, et al. (2003) Positron range modeling for statistical PET image reconstruction. Nuclear Science Symposium Conference Record, 2003 IEEE. 4:2501-2505.

  9. Hinrichsen PF (1968) Decay of 78.4 h 89Zr. Nucl Phys A 118:538–544

    Article  CAS  Google Scholar 

  10. De Jong HWAM, Perk L, Visser GWM , et al. (2005) High resolution PET imaging characteristics of 68Ga, 124I and 89Zr compared to 18F. Nuclear Science Symposium Conference Record, 2005 IEEE. 3:1624-1627.

  11. Makris NE, Boellaard R, Visser EP et al (2014) Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med 55:264–267

    Article  CAS  PubMed  Google Scholar 

  12. Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron emission tomography: basic sciences. Springer-Verlag, London

    Book  Google Scholar 

  14. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  CAS  PubMed  Google Scholar 

  15. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47:1587–1594

    Article  Google Scholar 

  16. Hutton BF, Hudson HM, Beekman FJ (1997) A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 24:797–808

    CAS  PubMed  Google Scholar 

  17. Lasnon C, Dugue AE, Briand M et al (2015) NEMA NU 4-optimized reconstructions for therapy assessment in cancer research with the inveon small animal PET/CT system. Mol Imaging Biol 17:403–412

    Article  PubMed  Google Scholar 

  18. Visser EP, Disselhorst JA, van Lier MGJTB et al (2011) Characterization and optimization of image quality as a function of reconstruction algorithms and parameter settings in a siemens inveon small-animal PET scanner using the NEMA NU 4-2008 standards. Nucl Instrum Methods Phys Res Sect A 629:357–367

    Article  CAS  Google Scholar 

  19. Tai Y-C, Ruangma A, Rowland D et al (2005) Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46:455–463

    PubMed  Google Scholar 

  20. Sanghee C, Quanzheng L, Sangtae A et al (2007) Iterative image reconstruction using inverse fourier rebinning for fully 3-D PET. IEEE Trans Med Imaging 26:745–756

    Article  Google Scholar 

  21. Cheng J-CK, Shoghi K, Laforest R (2012) Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys 39:1029–1041

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qi J, Leahy RM, Cherry SR et al (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001–1013

    Article  CAS  PubMed  Google Scholar 

  23. Hong H, Severin GW, Yang Y et al (2012) Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur J Nucl Med Mol Imaging 39:138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. National Electrical Manufacturers Association (2008) NEMA standard publication NU 4-2008: performance measurements of small animal positron emission tomographs. National Electrical Manufacturers Association, Rosslyn

    Google Scholar 

  25. Holdsworth CH, Badawi RD, Santos P, et al. (2003) Evaluation of a Monte Carlo scatter correction in clinical 3D PET. Nuclear Science Symposium Conference Record, 2003 IEEE. 4:2540-2544.

  26. Herman GT, Odhner D (1991) Performance evaluation of an iterative image reconstruction algorithm for positron emission tomography. IEEE Trans Med Imaging 10:336–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Bradshaw.

Ethics declarations

Conflict of Interest

Tyler Bradshaw was an intern at AbbVie. Martin Voorbach, David Reuter, Anthony Giamis, Sarah Mudd, and John Beaver are employees of AbbVie. The design, study conduct, and financial support for this research were provided by AbbVie. AbbVie participated in the interpretation of data, review, and approval of the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, T.J., Voorbach, M.J., Reuter, D.R. et al. Image quality of Zr-89 PET imaging in the Siemens microPET Focus 220 preclinical scanner. Mol Imaging Biol 18, 377–385 (2016). https://doi.org/10.1007/s11307-015-0903-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0903-z

Key words

Navigation