Skip to main content

Advertisement

Log in

A Standardized Method for In Vivo Mouse Pancreas Imaging and Semiquantitative β Cell Mass Measurement by Dual Isotope SPECT

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In order to evaluate future β cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective β cell tracer within the pancreas.

Procedures

2-[123I]Iodo-l-phenylalanine ([123I]IPA) and [Lys40([111In]DTPA)]exendin-3 ([111In]Ex3) pancreatic uptake and biodistribution were evaluated using SPECT, autoradiography, and an ex vivo biodistribution study in a controlled unilaterally nephrectomized mouse β cell depletion model. Semiquantitative measurement of the imaging results was performed using [123I]IPA to delineate the pancreas and [111In]Ex3 as a β cell tracer.

Results

The uptake of [123I]IPA was highest in the pancreas. Aside from the kidneys, the uptake of [111In]Ex3 was highest in the pancreas and lungs. Autoradiography showed only uptake of [111In]Ex3 in insulin-expressing cells. Semiquantitative measurement of [111In]Ex3 in the SPECT images based on the delineation of the pancreas with [123I]IPA showed a high correlation with the [111In]Ex3 uptake data of the pancreas obtained by dissection. A strong positive correlation was observed between the relative insulin positive area and the pancreas-to-blood ratios of [111In]Ex3 uptake as determined by counting with a gamma counter and the semiquantitative analysis of the SPECT images.

Conclusions

[123I]IPA is a promising tracer to delineate pancreatic tissue on SPECT images. It shows a high uptake in the pancreas as compared to other abdominal tissues. This study also demonstrates the feasibility and accuracy to measure the β cell mass in vivo in an animal model of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouwens L, Rooman I (2005) Regulation of pancreatic beta-cell mass. Physiol Rev 85:1255–1270

    Article  CAS  PubMed  Google Scholar 

  2. Pipeleers D, Chintinne M, Denys B et al (2008) Restoring a functional beta-cell mass in diabetes. Diabetes Obes Metab 10(Suppl 4):54–62

    Article  PubMed  Google Scholar 

  3. Bacha F, Gungor N, Arslanian SA (2008) Measures of beta-cell function during the oral glucose tolerance test, liquid mixed-meal test, and hyperglycemic clamp test. J Pediatr 152:618–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Henquin JC, Cerasi E, Efendic S et al (2008) Pancreatic beta-cell mass or beta-cell function? That is the question! Diabetes Obes Metab 10(Suppl 4):1–4

    PubMed  Google Scholar 

  5. Porter JR, Barrett TG (2005) Monogenic syndromes of abnormal glucose homeostasis: clinical review and relevance to the understanding of the pathology of insulin resistance and beta cell failure. J Med Genet 42:893–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Peyot ML, Pepin E, Lamontagne J et al (2010) Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Larsen MO, Rolin B, Gotfredsen CF et al (2004) Reduction of beta cell mass: partial insulin secretory compensation from the residual beta cell population in the nicotinamide-streptozotocin Gottingen minipig after oral glucose in vivo and in the perfused pancreas. Diabetologia 47:1873–1878

    Article  CAS  PubMed  Google Scholar 

  8. Brom M, Andralojc K, Oyen WJ et al (2010) Development of radiotracers for the determination of the beta-cell mass in vivo. Curr Pharm Des 16:1561–1567

    Article  CAS  PubMed  Google Scholar 

  9. Schneider S (2008) Efforts to develop methods for in vivo evaluation of the native beta-cell mass. Diabetes Obes Metab 10(Suppl 4):109–118

    Article  PubMed  Google Scholar 

  10. Bouckenooghe T, Flamez D, Ortis F et al (2010) Identification of new pancreatic beta cell targets for in vivo imaging by a systems biology approach. Curr Pharm Des 16:1609–1618

    Article  CAS  PubMed  Google Scholar 

  11. Flamez D, Roland I, Berton A et al (2010) A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2) gamma as a pancreatic beta cell-specific biomarker. Diabetologia 53:1372–1383

    Article  CAS  PubMed  Google Scholar 

  12. Kersemans V, Cornelissen B, Kersemans K et al (2006) 123/125I-labelled 2-iodo-L-phenylalanine and 2-iodo-D-phenylalanine: comparative uptake in various tumour types and biodistribution in mice. Eur J Nucl Med Mol Imaging 33:919–927

    Article  CAS  PubMed  Google Scholar 

  13. Varma VM, Beierwaltes WH, Lieberman LM, Counsell RE (1969) Pancreatic concentration of 125-I-labeled phenylalanine in mice. J Nucl Med 10:219–223

    CAS  PubMed  Google Scholar 

  14. Brom M, Oyen WJ, Joosten L et al (2010) 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging 37:1345–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Brom M, Woliner-van der Weg W, Joosten L et al (2014) Non-invasive quantification of the beta cell mass by SPECT with In-labelled exendin. Diabetologia

  16. Mertens J, Gysemans M (1991) New trends in radiopharmaceutical synthesis, quality assurance and regulatory control. In: Emran AM (ed) New trends in radiopharmaceutical synthesis, quality assurance and regulatory control. Plenum Press, New York

    Google Scholar 

  17. Mertens J, Kersemans V, Bauwens M et al (2004) Synthesis, radiosynthesis, and in vitro characterization of [125I]-2-iodo-L-phenylalanine in a R1M rhabdomyosarcoma cell model as a new potential tumor tracer for SPECT. Nucl Med Biol 31:739–746

    Article  CAS  PubMed  Google Scholar 

  18. Thorel F, Nepote V, Avril I et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464:1149–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gainkam LO, Keyaerts M, Caveliers V et al (2011) Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Mol Imaging Biol 13:940–948

    Article  PubMed  Google Scholar 

  20. Vanhove C, Defrise M, Bossuyt A, Lahoutte T (2009) Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging 36:1049–1063

    Article  PubMed  Google Scholar 

  21. Gotthardt M, Lalyko G, van Eerd-Vismale J et al (2006) A new technique for in vivo imaging of specific GLP-1 binding sites: first results in small rodents. Regul Pept 137:162–167

    Article  CAS  PubMed  Google Scholar 

  22. Wild D, Behe M, Wicki A et al (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033

    CAS  PubMed  Google Scholar 

  23. Christ E, Wild D, Forrer F et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405

    Article  CAS  PubMed  Google Scholar 

  24. Connolly BM, Vanko A, McQuade P et al (2011) Ex vivo imaging of pancreatic beta cells using a radiolabeled GLP-1 receptor agonist. Mol Imaging Biol 14:79–87

  25. Mukai E, Toyoda K, Kimura H et al (2009) GLP-1 receptor antagonist as a potential probe for pancreatic beta-cell imaging. Biochem Biophys Res Commun 389:523–526

    Article  CAS  PubMed  Google Scholar 

  26. Selvaraju RK, Velikyan I, Johansson L et al (2013) In vivo imaging of the glucagon-like peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4. J Nucl Med 54:1458–1463

    Article  CAS  PubMed  Google Scholar 

  27. Nalin L, Selvaraju RK, Velikyan I et al (2014) Positron emission tomography imaging of the glucagon-like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs. Eur J Nucl Med Mol Imaging

  28. Kirsi M, Cheng-Bin Y, Veronica F et al (2014) (64)Cu- and (68)Ga-labelled [Nle (14), Lys (40)(Ahx-NODAGA)NH 2]-exendin-4 for pancreatic beta cell imaging in rats. Mol Imaging Biol 16:255–263

    Article  PubMed  Google Scholar 

  29. Virostko J, Henske J, Vinet L et al (2011) Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proc Natl Acad Sci USA 108:20719–20724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Segawa H, Fukasawa Y, Miyamoto K et al (1999) Identification and functional characterization of a Na+−independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  CAS  PubMed  Google Scholar 

  31. Babu E, Kanai Y, Chairoungdua A et al (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278:43838–43845

    Article  CAS  PubMed  Google Scholar 

  32. Rooman I, Lutz C, Pinho AV et al (2013) Amino acid transporters expression in acinar cells is changed during acute pancreatitis. Pancreatology 13:475–485

    Article  CAS  PubMed  Google Scholar 

  33. Mariotta L, Ramadan T, Singer D et al (2012) T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol 590:6413–6424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013), project BetaImage, under grant agreement n° 222980. We thank William Rabiot, Emmy De Blay, and Chéraz Mehiri for technical support.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Bouwens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MOV 6798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathijs, I., Xavier, C., Peleman, C. et al. A Standardized Method for In Vivo Mouse Pancreas Imaging and Semiquantitative β Cell Mass Measurement by Dual Isotope SPECT. Mol Imaging Biol 17, 58–66 (2015). https://doi.org/10.1007/s11307-014-0771-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0771-y

Key words

Navigation