Skip to main content
Log in

Automated Radiosynthesis of [18F]ML-10, a PET Radiotracer Dedicated to Apoptosis Imaging, on a TRACERLab FX-FN Module

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

[18F]ML-10 is the most advanced radiopharmaceutical for the clinical imaging of the apoptosis phenomenon by PET. The preparation of this radiopharmaceutical on a commercial radiosynthesis module and the requested quality controls for its release are presented herein.

Procedures

ML-10 as reference and its mesyloxy derivative as precursor for labelling with fluorine-18 were prepared. [18F]ML-10 was synthesized via a [18F]fluorine-de-mesyloxy aliphatic nucleophilic substitution via a GE TRACERLab® FX-FN module. Quality controls were performed.

Results

The labelling precursor was obtained in a four step synthesis in 28 % overall yield affording ML-10 in two steps (88 % yield). Pure [18F]ML-10 was obtained with a decay corrected yield of 39.8 % ± 8.4 % (n = 7) in 70 min and a specific activity of 235 ± 85 GBq/μmol at the end of synthesis.

Conclusions

[18F]ML-10 was prepared on a widely available automated module and passed the quality control. A LC/MS method was developed to measure specific radioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  PubMed  CAS  Google Scholar 

  2. Faust A, Hermann S, Wagner S et al (2009) Molecular imaging of apoptosis in vivo with scintigraphic and optical biomarkers—a status report. Anticancer Agents Med Chem 9:968–985

    Article  PubMed  CAS  Google Scholar 

  3. Blankenberg FG (2008) In vivo imaging of apoptosis. Cancer Biol Ther 7:1525–1532

    Article  PubMed  CAS  Google Scholar 

  4. Blankenberg FG (2008) In vivo detection of apoptosis [proceeding]. J Nucl Med 49(Suppl 2):81S–95S

    Article  PubMed  CAS  Google Scholar 

  5. De Saint-Hubert M, Prinsen K, Mortelmans L, Verbruggen A, Mottaghy FM (2009) Molecular imaging of cell death. Methods 48:178–187

    Article  PubMed  Google Scholar 

  6. Lahorte CM, Vanderheyden JL, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 31:887–919

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen QD, Aboagye EO (2010) Imaging the life and death of tumors in living subjects: preclinical PET imaging of proliferation and apoptosis. Integr Biol (Cambridge) 2:483–495

    Article  Google Scholar 

  8. Michalski MH, Chen X (2011) Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging 38:358–377

    Article  PubMed  CAS  Google Scholar 

  9. Haberkorn U, Markert A, Mier W, Askoxylakis V, Altmann A (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151

    Article  PubMed  CAS  Google Scholar 

  10. Aboagye EO (2010) The future of imaging: developing the tools for monitoring response to therapy in oncology: the 2009 Sir James MacKenzie Davidson Memorial lecture [proceeding]. Br J Radiol 83:814–822

    Article  PubMed  CAS  Google Scholar 

  11. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840

    Article  PubMed  CAS  Google Scholar 

  12. Cohen A, Shirvan A, Levin G et al (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19:625–637

    Article  PubMed  CAS  Google Scholar 

  13. Reshef A, Shirvan A, Waterhouse RN et al (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–1528

    Article  PubMed  CAS  Google Scholar 

  14. Hoglund J, Shirvan A, Antoni G et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725

    Article  PubMed  Google Scholar 

  15. Larson S (2010) Newsline, oncology. J Nucl Med 51:19N–25N

    PubMed  Google Scholar 

  16. Mock B, Winkle W, Vavrek M (1997) A color spot test for the detection of Kryptofix 2.2.2 in [18F]FDG preparations. Nucl Med Biol 24:193–195

    Article  PubMed  CAS  Google Scholar 

  17. Klok RP, Windhorst AD (2006) Residual solvent analysis by gas chromatography in radiopharmaceutical formulations containing up to 12 % ethanol. Nucl Med Biol 33:935–938

    Article  PubMed  CAS  Google Scholar 

  18. Mahidhar YV, Rajesh M, Chaudhuri A (2004) Spacer-arm modulated gene delivery efficacy of novel cationic glycolipids: design, synthesis, and in vitro transfection biology. J Med Chem 47:3938–3948

    Article  PubMed  CAS  Google Scholar 

  19. Ziv I, Shirvan A (2005) NST Neurosurvival technologies Ltd. Perturbed membrane-binding compounds and methods of using the same [patent]. WO/2005/067388

Download references

Acknowledgements

We thank O. Tirel for performing the cyclotron irradiation. This work was supported by the “Région de Basse-Normandie” and the “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Sobrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobrio, F., Médoc, M., Martial, L. et al. Automated Radiosynthesis of [18F]ML-10, a PET Radiotracer Dedicated to Apoptosis Imaging, on a TRACERLab FX-FN Module. Mol Imaging Biol 15, 12–18 (2013). https://doi.org/10.1007/s11307-012-0574-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0574-y

Key words

Navigation