Skip to main content
Log in

Fast-Specific Tomography Imaging via Cerenkov Emission

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Development of more tumor-specific radiopharmaceuticals is not enough; to understand the disease, we must study data modeling. Although fluoro-18-deoxyglucose positron emission tomography can map a multi-peak distribution of trace radioisotopes, optical tomography should also be able to redirect the distribution.

Procedures

Multi-view image acquisition of small animals injected with 2-deoxy-2-[18F]fluoro-d-glucose began with X-ray computed tomography scanning and Cerenkov luminescence imaging. After fusion processing, utilization of the geometric row scaling and L 1/2 regularization operator effectively generates in vivo Cerenkov luminescence tomography images with the SP3 forward model.

Results

The identification is confirmed by the comparison between tumor-specific tomography from Cerenkov emission and the radioactivity measured in vitro.

Conclusion

The proposed technique can quickly localize the mobility of radionuclides and uptake by organs, which provides an imaging methodology in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cerenkov PA (1934) Visible luminescence of pure liquids under action of γ-radiation. Doklady Akad Nauk (USSR) 2:451–454

    Google Scholar 

  2. Burch WM (1971) Cerenkov light from 32P as an aid to diagnosis of eye tumours. Nature 234:358

    Article  PubMed  CAS  Google Scholar 

  3. Robertson R, Germannos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355–N365

    Article  PubMed  CAS  Google Scholar 

  4. Cho JS, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757–6771

    Article  PubMed  CAS  Google Scholar 

  5. Liu H, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. PLoS One 5:e9470

    Article  PubMed  Google Scholar 

  6. Dothager RS, Goiffon RJ, Jackson E, Harpstrite S, Piwnica-Worms D (2010) Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS One 5:e13300

    Article  PubMed  Google Scholar 

  7. Lewis MA, Kodibagkar VD, ÄOz OK, Mason RP (2010) On the potential for molecular imaging with Cerenkov luminescence. Opt Lett 35:3889–3891

    Article  PubMed  CAS  Google Scholar 

  8. Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091

    Article  PubMed  CAS  Google Scholar 

  9. Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15:060505

    Article  PubMed  Google Scholar 

  10. Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51:1123–1130

    Article  PubMed  CAS  Google Scholar 

  11. Park JC, An GI, Park S et al (2011) Luminescence imaging using radionuclides: a potential application in molecular imaging. Nucl Med Biol 38:321–329

    Article  PubMed  Google Scholar 

  12. Lucignani G (2011) Cerenkov radioactive optical imaging: a promising new strategy. Eur J Nucl Med Mol Imaging 38:592–595

    Article  PubMed  Google Scholar 

  13. Ran C, Zhang Z, Hooker J, Moore A (2011) In vivo photoactivation without light: use of Cherenkov radiation to overcome the penetration limit of light. Mol Imaging Biol. doi:10.1007/s11307-011-0489-z

  14. Jelley JV (1955) Cerenkov radiation and its applications. Br J Appl Phys. doi:10.1088/0508-3443/6/7/301

  15. Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495

    Article  PubMed  Google Scholar 

  16. Boschi F, Calderan L, D’Ambrosio D et al (2011) In vivo 18 F-FDG tumour uptake measurements in small animals using Cerenkov radiation. Eur J Nucl Med Mol Imaging 38:120–127

    Article  PubMed  Google Scholar 

  17. Li C, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small animal imaging. Opt Lett 35:1109–1111

    Article  PubMed  Google Scholar 

  18. Zhong J, Qin C, Yang X, Zhu S, Zhang X, Tian J (2011) Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging. Int J Biomed Imaging 2011:641618

    Article  PubMed  Google Scholar 

  19. Lu Y, Machado HB, Bao Q et al (2010) In vivo mouse bioluminescence tomography with radionuclide-based imaging validation. Mol Imaging Biol 13:53–58

    Article  Google Scholar 

  20. Liu K, Lu Y, Tian J et al (2010) Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt Express 18:20988–21002

    Article  PubMed  CAS  Google Scholar 

  21. Klose AD (2010) The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review. J Quant Spectrosc Ra 11:1852–1853

    Article  Google Scholar 

  22. Zhong J, Tian J, Yang X, Qin C (2011) Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng 39:1728–1735

    Article  PubMed  Google Scholar 

  23. Foucart S, Lai M (2009) Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q ≤ 1. Appl Comput Harmon Anal 26:395–407

    Article  Google Scholar 

  24. Xu Z (2010) Data modeling: visual psychology approach and L1/2 regularization theory. In: Proceedings of the International Congress of Mathematicians, Section 18, Hyderabad, India

  25. Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Probl 25:123010

    Article  Google Scholar 

  26. Gordon D, Gordon R (2010) CARP-CG: a robust and efficient parallel solver for linear systems, applied to strongly convection dominated PDEs. Parallel Comput 36:495–515

    Article  Google Scholar 

  27. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical (OPET) system: a computer simulation feasibility. Phys Med Biol 50:4225–4241

    Article  PubMed  Google Scholar 

  28. Tian J, Bai J, Yan X et al (2008) Multimodality molecular imaging. IEEE Eng Med Biol 27:48–57

    Article  CAS  Google Scholar 

  29. Poste G (2011) Bring on the biomarkers. Nature 469:156–157

    Article  PubMed  CAS  Google Scholar 

  30. Yu E, Muzi M, Hackenbracht JA et al (2011) C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med 36:192–198

    Article  PubMed  Google Scholar 

  31. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  32. Moses H III, Martin JB (2011) Biomedical research and health advances. N Engl J Med 364:567–571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Basic Research Program of China (973 Program) under grant no. 2011CB707700; the Knowledge Innovation Project of the Chinese Academy of Sciences under grant no. KGCX2-YW-907; the National Natural Science Foundation of China under grant nos. 81027002, 81071205, and 30970778; the Fellowship for Young International Scientists of the Chinese Academy of Sciences under grant no. 2010Y2GA03; and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists under grant no. 2010T2G36.

Conflict of Interest Statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, J., Qin, C., Yang, X. et al. Fast-Specific Tomography Imaging via Cerenkov Emission. Mol Imaging Biol 14, 286–292 (2012). https://doi.org/10.1007/s11307-011-0510-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0510-6

Key words

Navigation