Skip to main content
Log in

Whole-Body Cerenkov Luminescence Tomography with the Finite Element SP3 Method

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Generation of an accurate Cerenkov luminescence imaging model is a current issue of nuclear tomography with optical techniques. The article takes a pro-active approach toward whole-body Cerenkov luminescence tomography. The finite element framework employs the equation of radiative transfer via the third-order simplified spherical harmonics approximation to model Cerenkov photon propagation in a small animal. After this forward model is performed on a digital mouse with optical property heterogeneity and compared with the Monte Carlo method, we investigated the whole body reconstruction algorithm along a regularization path via coordinate descent. The endpoint of the follow-up study is the in vivo application, which provides three-dimensional biodistribution of the radiotracer uptake in the mouse from measured partial boundary currents. The combination of the forward and inverse model with elastic-net penalties is not only validated by numerical simulation, but it also effectively demonstrates in vivo imaging in small animals. Our exact reconstruction method enables optical molecular imaging to best utilize Cerenkov radiation emission from the decay of medical isotopes in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arridge, S. R., and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse Probl. 25:123010, 2009.

    Article  Google Scholar 

  2. Fortmann, T. E. A matrix inversion identity. IEEE. Trans. Autom. Control AC-15:599, 1970.

    Article  Google Scholar 

  3. Friedman, J. H., T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33:1–22, 2010.

    PubMed  Google Scholar 

  4. Jelley, J. V. Cerenkov radiation and its application. Br. J. Appl. Phys. 6:227–232, 1955.

    Article  Google Scholar 

  5. Klose, A. D., and B. J. Beattie. Bioluminescence tomography with SP3 equations. In: OSA Topical Meetings: Biomedical Optics, St. Petersburg, FL, USA, March 15–20, BMC8, 2008.

  6. Klose, A. D., and E. W. Larsen. Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220:441–470, 2006.

    Article  Google Scholar 

  7. Li, C., G. S. Mitchell, and S. R. Cherry. Cerenkov luminescence tomography for small animal imaging. Opt. Lett. 35:1109–1111, 2010.

    Article  PubMed  Google Scholar 

  8. Liu, K., Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt. Express. 18:20988–21002, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, H., G. Ren, S. Liu, X. Zhang, L. Chen, P. Han, and Z. Cheng. Optical imaging of reporter gene expression using a positron-emission-tomography probe. J. Biomed. Opt. 15:060505, 2010.

    Article  PubMed  Google Scholar 

  10. Liu, H. G., G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng. Molecular optical imaging with radioactive probes. PLoS One 5:e9470, 2010.

    Article  PubMed  Google Scholar 

  11. Liu, H., X. Zhang, B. Xing, P. Han, S. S. Gambhir, and Z. Cheng. Radiation luminescence excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091, 2010.

    Article  PubMed  CAS  Google Scholar 

  12. Lu, Y., A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, and A. F. Chatziioannou. Spectrally-resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation. Phys. Med. Biol. 54:6477–6493, 2009.

    Article  PubMed  Google Scholar 

  13. Pysz, M. A., S. S. Gambhir, and J. K. Willmann. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65:500–516, 2010.

    Article  PubMed  CAS  Google Scholar 

  14. Reiner, B. I. N., N. Knight, and E. L. Siegel. Radiology reporting, past, present, and future: the radiologist’s perspective. J. Am. Coll. Radiol. 4:313–319, 2007.

    Article  PubMed  Google Scholar 

  15. Ren, N., J. Liang, X. Qu, J. Li, B. Lu, and J. Tian. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt. Express. 18:6811–6823, 2010.

    Article  PubMed  CAS  Google Scholar 

  16. Robertson, R., M. S. Germannos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54:N355–N365, 2009.

    Article  PubMed  CAS  Google Scholar 

  17. Ruggiero, A., J. P. Holland, J. S. Lewis, and J. Grimm. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 51:1123–1130, 2010.

    Article  PubMed  CAS  Google Scholar 

  18. Spinelli, A. E., D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys. Med. Biol. 55:483–495, 2010.

    Article  PubMed  Google Scholar 

  19. Tian, J., J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang. Multimodality molecular imaging. IEEE Eng. Med. Biol. Mag. 27:48–57, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao, H., F. Gao, Y. Tanikawa, and Y. Yamada. Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging. J. Biomed. Opt. 12:062107, 2007.

    Article  PubMed  Google Scholar 

  21. Zhu, S., J. Tian, G. Yan, C. Qin, and J. Feng. Cone beam micro-CT system for small animal imaging and performance evaluation. Int. J. Biomed. Imaging 2009:960573, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article is supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB707700, the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No. KGCX2-YW-907, the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education (PCSIRT) under Grant No. IRT0645, the Hundred Talents Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant Nos. 81027002, 81071205, and the Science and Technology Key Project of Beijing Municipal Education Commission under Grant No. KZ200910005005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian.

Additional information

Associate Editor Jing Bai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, J., Tian, J., Yang, X. et al. Whole-Body Cerenkov Luminescence Tomography with the Finite Element SP3 Method. Ann Biomed Eng 39, 1728–1735 (2011). https://doi.org/10.1007/s10439-011-0261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0261-1

Keywords

Navigation