Skip to main content

Advertisement

Log in

Labeling of Luciferase/eGFP-Expressing Bone Marrow-Derived Stromal Cells with Fluorescent Micron-Sized Iron Oxide Particles Improves Quantitative and Qualitative Multimodal Imaging of Cellular Grafts In Vivo

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Development of multimodal imaging strategies is currently of utmost importance for the validation of preclinical stem cell therapy studies.

Procedures

We performed a combined labeling strategy for bone marrow-derived stromal cells (BMSC) based on genetic modification with the reporter genes Luciferase and eGFP (BMSC-Luc/eGFP) and physical labeling with blue fluorescent micron-sized iron oxide particles (MPIO) in order to unambiguously identify BMSC localization, survival, and differentiation following engraftment in the central nervous system of mice by in vivo bioluminescence (BLI) and magnetic resonance imaging and postmortem histological analysis.

Results

Using this combination, a significant increase of in vivo BLI signal was observed for MPIO-labeled BMSC-Luc/eGFP. Moreover, MPIO labeling of BMSC-Luc/eGFP allows for the improved identification of implanted cells within host tissue during histological observation.

Conclusions

This study describes an optimized labeling strategy for multimodal stem cell imaging resulting in improved quantitative and qualitative detection of cellular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40

    Article  PubMed  CAS  Google Scholar 

  2. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  PubMed  CAS  Google Scholar 

  3. Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13(1):127–132

    Article  PubMed  CAS  Google Scholar 

  4. Parent JM, Vexler ZS, Gong C et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813

    Article  PubMed  Google Scholar 

  5. Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189(1–2):49–57

    Article  PubMed  CAS  Google Scholar 

  6. Pfeifer K, Vroemen M, Caioni M et al (2006) Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 1(2):255–266

    Article  PubMed  Google Scholar 

  7. Ronsyn MW, Berneman ZN, Van Tendeloo VF et al (2008) Can cell therapy heal a spinal cord injury? Spinal Cord 46:532–539

    Article  PubMed  CAS  Google Scholar 

  8. Rosser AE, Zietlow R, Dunnett SB (2007) Stem cell transplantation for neurodegenerative diseases. Curr Opin Neurol 20(6):688–692

    Article  PubMed  Google Scholar 

  9. Sutton EJ, Henning TD, Pichler BJ et al (2008) Cell tracking with optical imaging. Eur Radiol 18(10):2021–2032

    Article  PubMed  Google Scholar 

  10. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  11. Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2(6):537–540, 511–512

    Article  PubMed  CAS  Google Scholar 

  12. Bergwerf I, De Vocht N, Tambuyzer B et al (2009) Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice. BMC Biotechnol 9:1

    Article  PubMed  Google Scholar 

  13. Boddington SE, Henning TD, Jha P et al (2010) Labeling human embryonic stem cell derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA compatible alternative to firefly luciferase. Cell Transplant 19(1):55–65

    Article  PubMed  Google Scholar 

  14. Sykova E, Jendelova P, Herynek V (2009) MR tracking of stem cells in living recipients. Methods Mol Biol 549:197–215

    Article  PubMed  CAS  Google Scholar 

  15. Himmelreich U, Hoehn M (2008) Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol 17(2):132–142

    Article  PubMed  Google Scholar 

  16. Tambyuzer BR, Bergwerf I, De Vocht N et al (2009) Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation. Immunol Cell Biol 87(4):267–273

    Article  Google Scholar 

  17. Ronsyn MW, Daans J, Spaepen G et al (2007) Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnol 7:90

    Article  PubMed  Google Scholar 

  18. Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3):867–872

    Article  PubMed  CAS  Google Scholar 

  19. Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53(2):329–338

    Article  PubMed  Google Scholar 

  20. Raschzok N, Morgul MH, Pinkernelle J et al (2008) Imaging of primary human hepatocytes performed with micron-sized iron oxide particles and clinical magnetic resonance tomography. J Cell Mol Med 12(4):1384–1394

    Article  PubMed  CAS  Google Scholar 

  21. Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4(3):143–164

    PubMed  Google Scholar 

  22. Boutry S, Brunin S, Mahieu I et al (2008) Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging 3(6):223–232

    Article  PubMed  CAS  Google Scholar 

  23. Mailänder V, Lorens MR, Holzapfel V et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agent. Mol Imaging Biol 10(3):138–146

    Article  PubMed  Google Scholar 

  24. Valable S, Barbier EL, Bernaudin M et al (2007) In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage 37:S47–S58

    Article  PubMed  Google Scholar 

  25. Daadi MM, Li Z, Arac A et al (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17(7):1282–1291

    Article  PubMed  CAS  Google Scholar 

  26. Hoehn M, Küstermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99(25):16267–16272

    Article  PubMed  CAS  Google Scholar 

  27. Jendelova P, Herynek V, DeCroos J et al (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50(4):767–776

    Article  PubMed  CAS  Google Scholar 

  28. Modo M, Mellodew K, Cash D et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21(1):311–317

    Article  PubMed  Google Scholar 

  29. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010

    Article  PubMed  Google Scholar 

  30. Shapiro EM, Sharer K, Skrtic S et al (2006) In vivo detection of single cells by MRI. Magn Reson Med 55(2):242–249

    Article  PubMed  Google Scholar 

  31. Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101(30):10901–10906

    Article  PubMed  CAS  Google Scholar 

  32. Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al (2006) Magnetic resonance imaging of the migration of neural precursors generated in the adult rodent brain. Neuroimage 32(3):1150–1157

    Article  PubMed  Google Scholar 

  33. Wu YL, Ye Q, Foley LM et al (2006) In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci USA 103(6):1852–1857

    Article  PubMed  CAS  Google Scholar 

  34. Sumner JP, Conroy R, Shapiro EM et al (2007) Delivery of fluorescent probes using iron oxide particles as carriers enables in-vivo labeling of migrating neural precursors for magnetic resonance imaging and optical imaging. J Biomed Opt 12(5):051504

    Article  PubMed  Google Scholar 

  35. Foley LM, Hitchens TK, Ho C et al (2009) Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury. J Neurotrauma 26(9):1509–1519

    Article  PubMed  Google Scholar 

  36. Sumner JP, Shapiro EM, Maric D et al (2009) In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype. Neuroimage 44(3):671–678

    Article  PubMed  Google Scholar 

  37. Yang J, Liu J, Niu G et al (2009) In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains. Neuroimage 48(2):319–328

    Article  PubMed  Google Scholar 

  38. Vreys R, Van de Velde G, Krylchkina O et al (2010) MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain: validation of various MPIO labeling strategies. Neuroimage 49(3):2094–2103

    Article  PubMed  Google Scholar 

  39. Nieman BJ, Shyu JY, Rodriguez JJ et al (2010) In vivo MRI of neural cell migration dynamics in the mouse brain. Neuroimage 50(2):456–464

    Article  PubMed  Google Scholar 

  40. Williams JB, Ye Q, Hitchens TK et al (2007) MRI detection of macrophages labeled using micrometer-sized iron oxide particles. J Magn Reson Imaging 25(6):1210–1218

    Article  PubMed  Google Scholar 

  41. Carr CA, Stuckey DJ, Tatton L et al (2008) Bone marrow-derived stromal cells home to and remain in the infracted rat heart but fail to improve function: an in vivo cine-MRI study. Am J Physiol Heart Circ Physiol 295(2):H533–H542

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Y, Bressler JP, Neal J et al (2007) ABCG2/BCRP expression modulates d-luciferin-based bioluminescence imaging. Cancer Res 67(19):9389–9397

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Y, Byun Y, Ren YR et al (2009) Identification of inhibitors of ABCG2 by a bioluminescence imaging-based high-throughput assay. Cancer Res 69(14):5867–5875

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge helpful assistance from Frank Rylant and Ingrid Bernaert (Laboratory of Pathology) with histological techniques. This work was supported by research grant G.0132.07 (granted to ZB) and 1.5.021.09.N.00 (granted to PP) of the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium), by SBO research grant IWT-60838: BRAINSTIM of the Flemish Institute for Science and Technology (granted to ZB and AVDL), in part by a Methusalem research grant from the Flemish government (granted to ZB), in part by EC-FP6-NoE DiMI (LSHB-CT-2005-512146), EC-FP6-NoE EMIL (LSHC-CT-2004-503569), and by the Inter University Attraction Poles IUAP-NIMI-P6/38 (granted to AVDL). Nathalie De Vocht holds a PhD studentship from the FWO-Vlaanderen. Peter Ponsaerts is a post-doctoral fellow of the FWO-Vlaanderen.

Conflict of Interest Statement

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Ponsaerts or Annemie Van der Linden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vocht, N., Bergwerf, I., Vanhoutte, G. et al. Labeling of Luciferase/eGFP-Expressing Bone Marrow-Derived Stromal Cells with Fluorescent Micron-Sized Iron Oxide Particles Improves Quantitative and Qualitative Multimodal Imaging of Cellular Grafts In Vivo . Mol Imaging Biol 13, 1133–1145 (2011). https://doi.org/10.1007/s11307-011-0469-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0469-3

Key words

Navigation