Skip to main content

Advertisement

Log in

FDG-PET/CT in the Evaluation of Cutaneous T-Cell Lymphoma

  • Rapid Communication
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

This comprehensive case series illustrates the findings on 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) of patients with varying stages of cutaneous T-cell lymphoma (CTCL). Patients were imaged with full-body scanning using a General Electric Discovery ST 16-slice PET/CT machine. Patients were assessed by PET/CT for cutaneous, nodal, and solid organ FDG uptake, indicative of highly metabolically active (i.e., putatively malignant cells) disease, and comparisons were made to CT data alone and to the physical examination. Several key observations strongly suggested that information afforded by PET/CT scan may be valuable. Various cutaneous lesions, from thin subtle plaques to thick tumors, were revealed and corresponded accurately to the cutaneous examination. In the case of subcutaneous lesions, PET/CT outperformed physical exam. CT also provided the depth/thickness of lesions. The differing levels of FDG uptake in enlarged nodes found within an individual patient as well as among different patients may potentially distinguish reactive from malignant adenopathy. Additionally, lymph nodes that did not meet staging size criteria (e.g., were not > 1 cm) revealed increased metabolic activity and, therefore, could be targeted for subsequent monitoring or biopsy. In addition, PET/CT identified visceral involvement in cases with advanced disease. In summary, PET/CT can provide physiologic and anatomic information on the wide diversity of external and internal lesions in CTCL and, therefore, may have great potential for improving the staging and monitoring of response to therapy of cutaneous, nodal, and visceral disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. Bangerter M, Moog F, Buchmann I, et al. (1998) Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9:1117–1122

    Article  PubMed  CAS  Google Scholar 

  2. Buchmann I, Moog F, Schirrmeister H, Reske SN (2000) Positron emission tomography for detection and staging of malignant lymphoma. Recent Results Cancer Res 156:78–89

    PubMed  CAS  Google Scholar 

  3. Buchmann I, Reinhardt M, Elsner K, et al. (2001) 2-(Fluorine-18)fluoro-2-deoxy-d-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer 91:889–899

    Article  PubMed  CAS  Google Scholar 

  4. Jerusalem G, Hustinx R, Beguin Y, Fillet G (2005) Evaluation of therapy for lymphoma. Semin Nucl Med 35:186–196

    Article  PubMed  Google Scholar 

  5. Kasamon YL, Wahl RL, Swinnen LJ (2004) FDG PET and high-dose therapy for aggressive lymphomas: toward a risk-adapted strategy. Curr Opin Oncol 16:100–105

    Article  PubMed  Google Scholar 

  6. Moog F, Bangerter M, Diederichs CG, et al. (1997) Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) PET in nodal staging. Radiology 203:795–800

    PubMed  CAS  Google Scholar 

  7. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN (1998) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16:603–609

    PubMed  CAS  Google Scholar 

  8. Okada J, Yoshikawa K, Itami M, et al. (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33:325–329

    PubMed  CAS  Google Scholar 

  9. Cremerius U, Fabry U, Wildberger JE, et al. (2002) Pre-transplant positron emission tomography (PET) using fluorine-18-fluoro-deoxyglucose (FDG) predicts outcome in patients treated with high-dose chemotherapy and autologous stem cell transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant 30:103–111

    Article  PubMed  CAS  Google Scholar 

  10. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK (2001) 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol 12:29–37

    Article  PubMed  Google Scholar 

  11. Guay C, Lepine M, Verreault J, Benard F (2003) Prognostic value of PET using 18F-FDG in Hodgkin’s disease for posttreatment evaluation. J Nucl Med 44:1225–1231

    PubMed  Google Scholar 

  12. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN (2000) 18-FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma—comparison with CT. Leuk Lymphoma 39:543–553

    PubMed  CAS  Google Scholar 

  13. Okada J, Oonishi H, Yoshikawa K, et al. (1994) FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 8:187–191

    Article  PubMed  CAS  Google Scholar 

  14. Spaepen K, Stroobants S, Dupont P, et al. (2003) Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53–59

    Article  PubMed  CAS  Google Scholar 

  15. Allen-Auerbach M, Quon A, Weber WA, et al. (2004) Comparison between 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol 6:411–416

    Article  PubMed  Google Scholar 

  16. Beyer T, Townsend DW, Brun T, et al. (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  17. Branstetter BFIV, Blodgett TM, Zimmer LA, et al. (2005) Head and neck malignancy: is PET/CT more accurate than PET or CT alone? Radiology 235:580–586

    Article  PubMed  Google Scholar 

  18. Reinartz P, Wieres F-J, Schneider W, Schur A, Buell U (2004) Side-by-side reading of PET and CT scans in oncology: which patients might profit from integrated PET/CT? Eur J Nucl Med Mol Imaging 31:1456–1461

    Article  PubMed  Google Scholar 

  19. Schaefer NG, Hany TF, Taverna C, et al. (2004) Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast—enhanced CT? Radiology 232:823–829

    Article  PubMed  Google Scholar 

  20. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Article  Google Scholar 

  21. Zhuang H, Yu JQ, Alavi A (2005) Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 43:121–134

    Article  PubMed  Google Scholar 

  22. El-Haddad G, Zhuang H, Gupta N, Alavi A (2004) Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med 34:313–329

    Article  PubMed  Google Scholar 

  23. Alavi A, Kung JW, Zhuang H (2004) Implications of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 34:56–69

    Article  PubMed  Google Scholar 

  24. Shapiro M, Yun M, Junkins-Hopkins JM, et al. (2002) Assessment of tumor burden and treatment response by 18F-fluorodeoxyglucose injection and positron emission tomography in patients with cutaneous T- and B-cell lymphomas. J Am Acad Dermatol 47:623–628

    Article  PubMed  Google Scholar 

  25. Valencak J, Becherer A, Der-Petrossian M, Trautinger F, Raderer M, Hoffmann M (2004) Positron emission tomography with [18F] 2-fluoro-d-2-deoxyglucose in primary cutaneous T-cell lymphomas. Haematologica 89:115–116

    PubMed  Google Scholar 

  26. Tsai EY, Taur A, Espinosa L, et al. (2006) Staging accuracy in mycosis fungoides and sezary syndrome using integrated positron emission tomography and computed tomography. Arch Dermatol 142:577–584

    Article  PubMed  Google Scholar 

  27. Lamberg SI, Bunn PA Jr (1979) Proceedings of the Workshop on Cutaneous T-Cell Lymphomas (mycosis fungoides and sezary syndrome). Introduction. Cancer Treat Rep 63:561–564

    PubMed  CAS  Google Scholar 

  28. Girardi M, Heald PW, Wilson LD (2004) The pathogenesis of mycosis fungoides. N Engl J Med 350:1978–1988

    Article  PubMed  CAS  Google Scholar 

  29. Kim EJ, Hess S, Richardson SK, et al. (2005) Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 115:798–812

    Article  PubMed  CAS  Google Scholar 

  30. Berger CL, Hanlon D, Kanada D, Girardi M, Edelson RL (2002) Transimmunization, a novel approach for tumor immunotherapy. Transfus Apher Sci 26:205–216

    Article  PubMed  Google Scholar 

  31. Berger CL, Longley J, Hanlon D, Girardi M, Edelson R (2001) The clonotypic T cell receptor is a source of tumor-associated antigens in cutaneous T cell lymphoma. Ann N Y Acad Sci 941:106–122

    Article  PubMed  CAS  Google Scholar 

  32. Berger CL, Mariwalla K, Girardi M, Edelson RL (2004) Advances in understanding the immunobiology and immunotherapy of cutaneous T-cell lymphoma. Adv Dermatol 20:217–235

    PubMed  Google Scholar 

  33. Girardi M, Berger C, Hanlon D, Edelson RL (2002) Efficient tumor antigen loading of dendritic antigen presenting cells by transimmunization. Technol Cancer Res Treat 1:65–69

    PubMed  CAS  Google Scholar 

  34. Girardi M, Edelson RL (2000) Cutaneous T-cell lymphoma: pathogenesis and treatment. Oncology (Williston Park) 14:1061–1070; discussion 1070–1064, 1076

    CAS  Google Scholar 

  35. Girardi M, Heald PW (2000) Cutaneous T-cell lymphoma and cutaneous graft-versus-host disease. Two indications for photopheresis in dermatology. Dermatol Clin 18:417–423, viii

    Article  PubMed  CAS  Google Scholar 

  36. Girardi M, Knobler R, Edelson R (2003) Selective immmunotherapy through extracorporeal photochemotherapy: yesterday, today, and tomorrow. Hematol Oncol Clin North Am 17:1391–1403

    Article  PubMed  Google Scholar 

  37. Girardi M, McNiff JM, Heald PW (1999) Extracorporeal photochemotherapy in human and murine graft-versus-host disease. J Dermatol Sci 19:106–113

    Article  PubMed  CAS  Google Scholar 

  38. Girardi M, Schechner J, Glusac E, Berger C, Edelson R (2002) Transimmunization and the evolution of extracorporeal photochemotherapy. Transfus Apher Sci 26:181–190

    Article  PubMed  Google Scholar 

  39. Knobler R, Girardi M (2001) Extracorporeal photochemoimmunotherapy in cutaneous T cell lymphomas. Ann N Y Acad Sci 941:123–138

    Article  PubMed  CAS  Google Scholar 

  40. Wilson LD, Jones GW, Smith BD (2006) Cutaneous lymphomas—radiotherapeutic strategies. Front Radiat Ther Oncol 39:1–15

    PubMed  Google Scholar 

  41. Assaf C, Hummel M, Steinhoff M, et al. (2005) Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. Blood 105:503–510

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip H. Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, P.H., McClennan, B.L., Carlson, K. et al. FDG-PET/CT in the Evaluation of Cutaneous T-Cell Lymphoma. Mol Imaging Biol 10, 74–81 (2008). https://doi.org/10.1007/s11307-007-0127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0127-y

Key words

Navigation