Skip to main content
Log in

Metabolomics in epidemiologic research: challenges and opportunities for early-career epidemiologists

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

The application of metabolomics to epidemiologic studies is increasing.

Aim of Review

Here, we describe the challenges and opportunities facing early-career epidemiologists aiming to apply metabolomics to their research.

Key Scientific Concepts of Review

Many challenges inherent to metabolomics may provide early-career epidemiologists with the opportunity to play a pivotal role in answering critical methodological questions and moving the field forward. Although generating large-scale high-quality metabolomics data can be challenging, data can be accessed through public databases, collaboration with senior researchers or participation within interest groups. Such efforts may also assist with obtaining funding, provide knowledge on training resources, and help early-career epidemiologists to publish in the field of metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alkawaa, F. M., et al. (2017). Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. Journal of Proteome Research, 17(1), 337–347.

    Google Scholar 

  • Assi, N., et al. (2015). A statistical framework to model the meeting-in-the-middle principle using metabolomic data: Application to hepatocellular carcinoma in the EPIC study. Mutagenesis, 30(6), 743–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldassarre, M. E., et al. (2018). Effectiveness and safety of a probiotic-mixture for the treatment of infantile colic: A double-blind, randomized, placebo-controlled clinical trial with fecal real-time PCR and nmr-based metabolomics analysis. Nutrients, 10(2), 195.

    Article  PubMed Central  Google Scholar 

  • Bictash, M., et al. (2010). Opening up the “Black Box”: Metabolic phenotyping and metabolome-wide association studies in epidemiology. Journal of Clinical Epidemiology, 63(9), 970–979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broadhurst, D., et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14(6), 72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carayol, M., et al. (2017). Blood metabolic signatures of body mass index: A targeted metabolomics study in the EPIC cohort. Journal of Proteome Research, 16(9), 3137–3146.

    Article  Google Scholar 

  • Cheng, S., et al. (2017). Potential impact and study considerations of metabolomics in cardiovascular health and disease: A scientific statement from the American Heart Association. Circulation Cardiovascular Genetics, 10(2), e000032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross, A. J., et al. (2014). A prospective study of serum metabolites and colorectal cancer risk. Cancer, 120(19), 3049–3057.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L., et al. (2016). Serum metabolomics reveals serotonin as a predictor of severe dengue in the early phase of dengue fever. PLoS Neglected Tropical Diseases, 10(4), e0004607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derkach, A., et al. (2017). Effects of dietary sodium on metabolites: The dietary approaches to stop hypertension (DASH)-sodium feeding study. The American Journal of Clinical Nutrition, 106(4), 1131–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudzik, D., et al. (2018). Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. Journal of Pharmaceutical and Biomedical Analysis, 147, 149–173.

    Article  CAS  PubMed  Google Scholar 

  • Fages, A., et al. (2014). Investigating sources of variability in metabolomic data in the EPIC study: The principal component partial R-square (PC-PR2) method. Metabolomics, 10(6), 1074–1083.

    Article  CAS  Google Scholar 

  • Fages, A., et al. (2015). Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Medicine, 13, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Floegel, A., et al. (2013). Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 62(2), 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floegel, A., et al. (2018). Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. European Journal of Epidemiology, 33(1), 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Guertin, K. A., et al. (2015). Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. American Journal of Clinical Nutrition, 101(5), 1000–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandes, V. V., et al. (2017). A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis, 38(18), 2232–2241.

    Article  CAS  PubMed  Google Scholar 

  • Ho, J. E., et al. (2016). Metabolomic profiles of body mass index in the framingham heart study reveal distinct cardiometabolic phenotypes. PLoS ONE, 11(2), e0148361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes, E., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453(7193), 396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrydziuszko, O., & Viant, M. R. (2012). Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics, 8(1), 161–174.

    Article  CAS  Google Scholar 

  • Huang, J., et al. (2016). Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. British Journal of Cancer, 115(9), 1087–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., et al. (2016). Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Medicine, 8(1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke, C., et al. (2015). Large-scale profiling of metabolic dysregulation in ovarian cancer. International Journal of Cancer, 136(3), 516–526.

    CAS  PubMed  Google Scholar 

  • Kirwan, J. A., et al. (2018). Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white paper, community perspective (for “precision Medicine and pharmacometabolomics task group"-the metabolomics society initiative). Clinical Chemistry, 64(8), 1158–1182.

    Article  CAS  PubMed  Google Scholar 

  • Liesenfeld, D. B., et al. (2013). Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiology Prevention Biomarkers, 22(12), 2182–2201.

    Article  CAS  Google Scholar 

  • Loftfield, E., et al. (2016). Comparison of collection methods for fecal samples for discovery metabolomics in epidemiologic studies. Cancer Epidemiology Prevention Biomarkers, 25(11), 1483–1490.

    Article  Google Scholar 

  • Mathe, E. A., et al. (2014). Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Research, 74(12), 3259–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menni, C., et al. (2013). Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes, 62(12), 4270–4276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molins, C. R., et al. (2015). Development of a metabolic biosignature for detection of early Lyme disease. Clinical Infectious Diseases, 60(12), 1767–1775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondul, A. M., et al. (2015). Metabolomic analysis of prostate cancer risk in a prospective cohort: The alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. International Journal of Cancer, 137(9), 2124–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, S. C., et al. (2014). Human metabolic correlates of body mass index. Metabolomics, 10(2), 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Moore, S. C., et al. (2018). A metabolomics analysis of body mass index and postmenopausal breast cancer risk. Journal of National Cancer Institute, 110(6), 588–597.

    Google Scholar 

  • Nishiumi, S., et al. (2012). A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE, 7(7), e40459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Playdon, M. C., et al. (2017). Nutritional metabolomics and breast cancer risk in a prospective study. The American Journal of Clinical Nutrition, 106(2), 637–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, S., et al. (2015). Computational and statistical analysis of metabolomics data. Metabolomics, 11(6), 1492–1513.

    Article  CAS  Google Scholar 

  • Saccenti, E., et al. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361–374.

    Article  CAS  Google Scholar 

  • Scalbert, A., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien, M., et al. (2016). Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study. International Journal of Cancer, 138(2), 348–360.

    Article  CAS  PubMed  Google Scholar 

  • Su, L. J., et al. (2014). The use of metabolomics in population-based research. Advances in Nutrition, 5(6), 785–788.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumner, L. W., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend, M. K., et al. (2013). Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clinical Chemistry, 59(11), 1657–1667.

    Article  CAS  PubMed  Google Scholar 

  • Tzoulaki, I., et al. (2014). Design and analysis of metabolomics studies in epidemiologic research: A primer on -omic technologies. American Journal of Epidemiology, 180(2), 129–139.

    Article  PubMed  Google Scholar 

  • Wang, T. J., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang-Sattler, R., et al. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems Biology, 8, 615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh, P., et al. (2018). Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: Results from the advance trial. Diabetologia, 61(7), 1581–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtz, P., et al. (2015). Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation, 131(9), 774–785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, Q., et al. (2014). Sources of variability in metabolite measurements from urinary samples. PLoS ONE, 9(5), e95749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanetti, K., et al. (2014). The future of metabolomic profiling in population-based research: Opportunities and challenges. Journal of Analytical and Bioanalytical Techniques, 5, 203.

    Article  Google Scholar 

  • Zheng, Y., et al. (2013a). Associations between metabolomic compounds and incident heart failure among African Americans: The ARIC Study. American Journal of Epidemiology, 178(4), 534–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., et al. (2013b). Metabolomics and incident hypertension among blacks: The atherosclerosis risk in communities study. Hypertension, 62(2), 398–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

E.H. van Roekel was financially supported by Wereld Kanker Onderzoek Fonds (WKOF), as part of the World Cancer Research Fund International grant programme (Grant No. 2016/1620) and the GROW School for Oncology and Developmental Biology. E. Loftfield was supported by the Intramural Research Program of the National Institutes of Health, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services. R.S. Kelly was supported by a Discovery Award from The US Department of Defense (Grant No. W81XWH-17-1-0533), and a grant from the US NIH (Grant No. 1R01HL123915-01). O.A. Zeleznik was supported by grants from the NIH (Grant Nos. CA087969, CA050385). K.A. Zanetti was supported by the Extramural Research Program of the National Institutes of Health, Division of Cancer Control and Populations Sciences, National Cancer Institute, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Eline H. van Roekel.

Ethics declarations

Conflict of interest

All authors declare that they do not have conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Roekel, E.H., Loftfield, E., Kelly, R.S. et al. Metabolomics in epidemiologic research: challenges and opportunities for early-career epidemiologists. Metabolomics 15, 9 (2019). https://doi.org/10.1007/s11306-018-1468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1468-z

Keywords

Navigation