Skip to main content
Log in

A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, C. M., & Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence excitation–emission data. Journal of Chemometrics, 17(4), 200–215.

    Article  CAS  Google Scholar 

  • Atkins, S., Hidalgo-Diaz, L., Kalisz, H., Mauchline, T. H., Hirsch, P. R., & Kerry, B. R. (2003). Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Management Science, 59, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Back, M., Jenkinson, P., Deliopoulos, T., & Haydock, P. (2010). Modifications in the potato rhizosphere during infestations of Globodera rostochiensis and subsequent effects on the growth of Rhizoctonia solani. European Journal of Plant Pathology, 128(4), 459–471.

    Article  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Baker, A. (2002). Fluorescence properties of some farm wastes: Implications for water quality monitoring. Water Research, 36(1), 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Baldacci-Cresp, F., Chan, C., Maucourt, M., Deborde, C., Hopkins, J., Lecomte, P., et al. (2012). (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLoS Pathogens, 8(1), 1002471.

    Article  Google Scholar 

  • Bendezu, I. F. (2004). Detection of the tomato mi 1.2 gene by PCR using non-organic DNA purification. Nematropica, 34(1), 23–30.

    Google Scholar 

  • Bertoncini, E. I., D’orazio, V., Senesi, N., & Mattiazzo, M. E. (2005). Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment. Analytical and Bioanalytical Chemistry, 381(6), 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  • Bordallo, J. J., López-Llorca, L. V., Jansson, H. B., Salinas, J., Persmark, L., & Asensio, L. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist, 154(2), 491–499.

    Article  Google Scholar 

  • Bothwell, J. H., & Griffin, J. L. (2011). An introduction to biological nuclear magnetic resonance spectroscopy. Biological Reviews, 86, 493–510.

    Article  PubMed  Google Scholar 

  • Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.

    Article  Google Scholar 

  • Bourne, J. M., Kerry, B. R., Galloway, J., Smith, C., & Marchese, G. (1999). Evaluation of application techniques and materials for the production of Verticillium chlamydosporium in experiments to control root-knot nematodes in glasshouse and field trials. Journal of Nematology, 9, 153–162.

    Google Scholar 

  • Bowers, J. H., Nameth, S. T., Riedel, R. M., & Rowe, R. C. (1996). Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 86, 614–621.

    Article  Google Scholar 

  • Bro, R. (1997). PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149–171.

    Article  CAS  Google Scholar 

  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37(24), 5701–5710.

    Article  CAS  PubMed  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346.

    Article  CAS  Google Scholar 

  • Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., et al. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, R. H. C., Robinson, A. F., & Perry, R. N. (2009). Hatch and host location. In R. N. Perry, M. Moens, & J. Starr (Eds.), Root-knot nematodes (pp. 139–162). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Dababat, A. E. F. A., & Sikora, R. A. (2007). Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology, 9(6), 771–776.

    Article  Google Scholar 

  • De Leij, F. A. A. M., & Kerry, B. R. (1991). The nematophagous fungus, Verticillium chlamydosporium, as a biological control agent for Meloidogyne arenaria. Revue de Nematologie, 14, 157–194.

    Google Scholar 

  • Dicke, M., & Dijkman, H. (2001). Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochemical Systematics and Ecology, 29, 1075–1087.

    Article  CAS  Google Scholar 

  • Dixon, R. A., & Strack, D. (2003). Phytochemistry meets genome analysis, and beyond. Phytochemistry, 62, 815–816.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, T., Powers, S., Gaur, H., Birkett, M., & Curtis, R. (2012). Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola. Nematology, 14(3), 09–320.

    Article  Google Scholar 

  • Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Gheysen, G., & Mitchum, M. G. (2011). How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology, 14(4), 415–421.

    Article  PubMed  Google Scholar 

  • Gibon, Y., Rolin, D., Deborde, C., Bernillon, S., & Moing, A. (2012). New opportunities in metabolomics and biochemical phenotyping for plant systems biology. In U. Roessner (Ed.), Biochemistry, genetics and molecular biology. Metabolomics. InTech. ISBN 978-953-51-0046-1.

  • Goto, D. B., Miyazawa, H., Mar, J. C., & Sato, M. (2013). Not to be suppressed? Rethinking the host response at a root-parasite interface. Plant Science, 213, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Haegeman, A., Mantelin, S., Jones, J. T., & Gheysen, G. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene, 492, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Hage-Ahmed, K., Moyses, A., Voglgruber, A., Hadacek, F. & Steinkellner, S. (2013). Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseaeand the soilborne pathogen Fusarium oxysporumf sp. lycopersici. Journal of Phytopathology, 161(11–12), 763–773.

  • Heather, L. C., Wang, X., West, J. A., & Griffin, J. L. (2013). A practical guide to metabolomic profiling as a discovery tool for human heart disease. Journal of Molecular and Cellular Cardiology, 5, 2–11.

    Article  Google Scholar 

  • Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., & Yoder, J. I. (2003). Molecular signals and receptors: Controlling rhizosphere interactions between plants and other organisms. Ecology, 84, 858–868.

    Article  Google Scholar 

  • Hofmann, J., Ashry, A. E. N. E., Anwar, S., Erban, A., Kopka, J., & Grundler, F. (2010). Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. The Plant Journal, 62, 1058–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson, N. J., Baker, A., & Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—A review. River Research and Applications, 23(6), 631–649.

    Article  Google Scholar 

  • Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N., & Lugtenberg, B. (2006). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecular Plant-Microbe Interactions, 19(3), 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Kneer, R., Poulev, A. A., Olesinski, A., & Raskin, I. (1999). Characterization of the elicitor-induced biosynthesis and secretion of genistein from roots of Lupinus luteus L. Journal of Experimental Botany, 50(339), 1553–1559.

    Article  CAS  Google Scholar 

  • Koltai, H., Matusova, R., & Kapulnik, Y. (2012). Strigolactones in root exudates as a signal in symbiotic and parasitic interactions (pp. 49–73). In: J. M. Vivanco, F. Baluška (eds.), Secretions and exudates in biological systems, signaling and communication in plants, 12 (p. 283). New York: Springer.

  • Leinhos, G. M. E., & Buchenauer, H. (1992). Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. Journal of Phytopathology, 136, 177–193.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Holmes, E. (2007). The handbook of metabonomics and metabolomics. Amsterdam: Elsevier.

    Google Scholar 

  • Macia-Vicente, J. G., Rosso, L. C., Ciancio, A., Jansson, H. B., & Lopez-Llorca, L. V. (2009). Colonization of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Annals of Applied Biology, 155, 391–401.

    Article  Google Scholar 

  • Marhuenda-Egea, F., Gonsavez-Alvarez, R., Lledo-Bosch, B., Ten, J., & Bernabeu, R. (2013). New approach for chemometric analysis of mass spectrometry data. Analytical Chemistry, 85(6), 3053–3058.

    Article  CAS  PubMed  Google Scholar 

  • Marhuenda-Egea, F. C., Martínez-Sabater, E., Jordá, J., Moral, R., Bustamante, M. A., Paredes, C., et al. (2007). Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation–emission matrix. Chemosphere, 68(2), 301–309.

    Article  CAS  PubMed  Google Scholar 

  • McClure, M. A., Kruk, T. H., & Misaghi, I. (1973). A method for obtaining quantities of clean Meloidogyne eggs. Journal of Nematology, 5, 230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchum, M. G., Hussey, R. S., Baum, T. J., Wang, X., Elling, A. A., Wubben, M., et al. (2013). Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist, 199(4), 879–894.

    Article  PubMed  Google Scholar 

  • Mobed, J. J., Hemmingsen, S. L., Autry, J. L., & McGown, L. B. (1996). Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environmental Science and Technology, 30(10), 3061–3065.

    Article  CAS  Google Scholar 

  • Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., de Groot, J., van Beek, T. A., et al. (2006). A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology, 141, 1205–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moco, S., Jenny, F., Vos, R. C. H., Bino, R. J., & Vervoort, J. (2008). Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance. Metabolomics, 4(3), 202–215.

    Article  CAS  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., Salinas, J., Park, J. O., & Sivasithamparam, K. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology & Biochemistry, 37, 1229–1235.

    Article  CAS  Google Scholar 

  • Ohno, T., & Bro, R. (2006). Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Science Society of America Journal, 70(6), 2028–2037.

    Article  CAS  Google Scholar 

  • Olivares-Bernabeu, C. M., & López-Llorca, L. V. (2002). Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micologia, 19(2), 104–110.

    Google Scholar 

  • Parlanti, E., Wörz, K., Geoffroy, L., & Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765–1781.

    Article  CAS  Google Scholar 

  • Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7(3), 508–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano, M. R., de Oliveira, S. C., Santiago Silva, M. R., & Senesi, N. (2001). Assessment of maturity degree of composts from domestic solid wastes by fluorescence and Fourier transform infrared spectroscopies. Journal of Agriculture and Food Chemistry, 49(12), 5874–5879.

    Article  CAS  Google Scholar 

  • Rao, M. S., Reddy, P. P., Mittal, A., Chandravadana, M. V., & Nagesh, M. (1996). Effect of some secondary plant metabolites as seed treatment agents against Meloidogyne incognita on tomato. Nematologia Mediterranea, 24, 49–51.

    Google Scholar 

  • Rovira, A. D., Newman, E. I., Bowen, H. J., & Campbell, R. (1974). Quantitative assessment of the rhizosphere microflora by direct microscopy. Soil Biology & Biochemistry, 6, 211–216.

    Article  Google Scholar 

  • Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202, 190–202.

    Article  CAS  PubMed  Google Scholar 

  • Sierra, M. M. D., Giovanela, M., Parlanti, E., & Soriano-Sierra, E. J. (2005). Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere, 58, 715–733.

    Article  CAS  PubMed  Google Scholar 

  • Simons, M., Permentier, H. P., de Weger, L. A., Wijffelman, C. A., & Lugtenberg, B. J. J. (1997). Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Molecular Plant-Microbe Interactions, 10(1), 102–106.

    Article  CAS  Google Scholar 

  • Tanda, A. S., Atwal, A. S., & Bajaj, P. S. (1985). In vitro inhibition of root-knot nematode Meloidogyne incognita by sesame root exudate and its amino acids. Nematologica, 35, 115–124.

    Article  Google Scholar 

  • Teillet, A., Dybal, K., Kerry, B., Miller, A., Curtis, R., & Hedden, P. (2013). Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS ONE, 8(4), e61259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira-Machado, A. R., Costa-Campos, V. A., Rodrigues-Silva, W. J., de Campos, V. P., Mattos-Zeri, A. C., & Ferreira-Oliveira, D. (2012). Metabolic profiling in the roots of coffee plants exposed to the coffee root-knot nematode, Meloidogyne exigua. European Journal of Plant Pathology, 134(2), 431–441.

    Article  Google Scholar 

  • Tzortzakakis, E. A. (2007). The effect of the fungus Pochonia chlamydosporia on the root-knot nematode Meloidogyne incognita in pots. Russian Journal of Nematology, 15(2), 89–94.

    Google Scholar 

  • Van Grundy, S. D., Kirkpatrick, J. D., & Golden, J. (1977). The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. Journal of Nematology, 9, 113–121.

    Google Scholar 

  • Verboven, S., & Hubert, M. (2005). LIBRA: A MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory Systems, 75(2), 127–136.

    Article  CAS  Google Scholar 

  • Viant, M. R., & Sommer, U. (2013). Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics, 9, S144–S158.

    Article  Google Scholar 

  • Vivanco, J. M., Guimaraes, R. L., & Flores, E. (2002). Underground plant metabolism: The biosynthetic potential of roots. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (3rd ed.). CRC Press, Taylor & Francis Group.

  • Vos, C., Claerhout, S., Mkandawire, R., Panis, B., Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 354(1–2), 335–345.

    Article  CAS  Google Scholar 

  • Wuyts, N., Swennen, R., & De Waele, D. (2006). Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology, 8, 89–101.

    Article  CAS  Google Scholar 

  • Zhang, H.-J., Wei, Z.-G., Zhao, H.-Y., Yang, H.-X., & Hu, F. (2009). Effects of low-molecular-weight organic acids on gadolinium accumulation and transportation in tomato plants. Biological Trace Element Research, 127(1), 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B. G. (1999). Nematicidal activity of quinolizidine alkaloids and the functional group pairs in their molecular structure. Journal of Chemical Ecology, 25, 2205–2214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Innovation Grants AGL 2008-00716/AGR, AGL 2011-29297 and with a grant from the University of Alicante to N. Escudero (UAFPU2011). The authors want to thank Mr. Federico Lopez Moya (University of Alicante) his collaboration in the development and discussion of Venn diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Escudero.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escudero, N., Marhuenda-Egea, F.C., Ibanco-Cañete, R. et al. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica . Metabolomics 10, 788–804 (2014). https://doi.org/10.1007/s11306-014-0632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0632-3

Keywords

Navigation