Skip to main content
Log in

Multi-block PCA and multi-compartmental study of the metabolic responses to intake of hydrolysed versus intact casein in C57BL/6J mice by NMR-based metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Recently we showed that exchanging intact casein with extensively hydrolysed casein in Western diets prevented diet-induced obesity in obesity-prone C57BL/6J mice. To gain further insight into the underlying mechanisms for the metabolic alterations induced by intake of hydrolysed casein, we performed an exploratory investigation using proton NMR spectroscopy, multi-block PCA (MBPCA) and a multi-compartment model including analyses of plasma, urine, faeces and tissue samples from mice fed diets with intact or hydrolysed casein and 16 or 32 energy% protein. The MBPCA superscores showed a clear separation between samples from mice fed intact and hydrolysed casein diets, respectively. Block loadings revealed that fecal fat content was higher, and tissue and plasma lipid levels were lower in mice fed hydrolysed casein diets compared with mice fed intact casein. Amino acid metabolism was also altered by dietary protein form, and levels of branched-chain amino acids were higher in faeces and urine and lower in plasma and spleen in mice fed hydrolysed protein. Moreover, hepatic levels of the sulphur-containing metabolites taurine and glutathione were increased in mice fed hydrolysed casein, and hepatic glycogen amount was increased in mice fed hydrolysed casein. In contrast, the levels of glucose and its metabolite lactate were reduced in faeces, liver and plasma. Taken together, NMR-based metabolomic analyses indicated that pathways within lipid, amino acid and carbohydrate metabolism were altered by intake of hydrolysed casein, and that these alterations are likely to be underlying mechanisms for the observed prevention against diet-induced obesity associated with hydrolysed casein intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An, Y. P., Xu, W. X., Li, H. H., Lei, H. H., Zhang, L. M., Hao, F. H., et al. (2013). High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. Journal of Proteome Research, 12(8), 3755–3768.

    Article  CAS  PubMed  Google Scholar 

  • Aoyama, T., Fukui, K., Takamatsu, K., Hashimoto, Y., & Yamamoto, T. (2000). Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition, 16(5), 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Azzout-Marniche, D., Gaudichon, C., Blouet, C., Bos, C., Mathe, V., Huneau, J., et al. (2007). Liver glyconeogenesis: A pathway to cope with postprandial amino acid excess in high-protein fed rats? American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 292(4), R1400–R1407.

    Article  CAS  Google Scholar 

  • Bertram, H. C., Hoppe, C., Petersen, B. O., Duus, J. O., Molgaard, C., & Michaelsen, K. F. (2007). An NMR-based metabonomic investigation on effects of milk and meat protein diets given to 8-year-old boys. British Journal of Nutrition, 97(4), 758–763.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, H. C., Knudsen, K. E. B., Serena, A., Malmendal, A., Nielsen, N. C., Frette, X. C., et al. (2006). NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. British Journal of Nutrition, 95(5), 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Biais, B., Allwood, J. W., Deborde, C., Xu, Y., Maucourt, M., Beauvoit, B., et al. (2009). H-1 NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: Application to spatial metabolite analysis in melon. Analytical Chemistry, 81(8), 2884–2894.

    Article  CAS  PubMed  Google Scholar 

  • Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., & Beaufrere, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulange, C. L., Claus, S. P., Chou, C. J., Collino, S., Montoliu, I., Kochhar, S., et al. (2013). Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. Journal of Proteome Research, 12(4), 1956–1968.

    Article  CAS  PubMed  Google Scholar 

  • Broccali, G., Berti, M., Pistolesi, E., & Cestaro, B. (2005). Hydrolyzed milk-serum peptides reduce body weight and fat content of dietary obese rats ameliorating their antioxidant status and liver functions. Panminerva Medica, 47(2), 123–129.

    CAS  PubMed  Google Scholar 

  • Buchanan, J. M., & Hartman, S. C. (1959). Enzymic reactions in the synthesis of the purines. Advances in Enzymology and Related Subjects of Biochemistry, 21, 199–261.

    Google Scholar 

  • Daykin, C. A., Van Duynhoven, J. P. M., Groenewegen, A., Dachtler, M., Van Amelsvoort, J. M. M., & Mulder, T. P. J. (2005). Nuclear magnetic resonance spectroscopic based studies of the metabolism of black tea polyphenols in humans. Journal of Agricultural and Food Chemistry, 53(5), 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  • Ekman, D. R., Teng, Q. N., Villeneuve, D. L., Kahl, M. D., Jensen, K. M., Durhan, E. J., et al. (2009). Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17 alpha-ethynylestradiol. Metabolomics, 5(1), 22–32.

    Article  CAS  Google Scholar 

  • Hindmarch, J. P., Awati, A., Edwards, P. J. B., & Moughana, P. (2012). NMR-basedmetabonomics detection of differences in the metabolism of hydrolysed versus intact protein of similar amino acid profile. Journal of the Science of Food and Agriculture, 92, 2013–2016.

    Article  Google Scholar 

  • Huxtable, R. J. (1992). Physiological actions of taurine. Physiological Reviews, 72(1), 101–163.

    CAS  PubMed  Google Scholar 

  • Jacobs, D. M., Deltimple, N., van Velzen, E., van Dorsten, F. A., Bingham, M., Vaughan, E. E., et al. (2008). H-1 NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine, 21(6), 615–626.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. M., Chang, U. J., Kang, D. H., Kim, J. M., Choi, Y. M., & Suh, H. J. (2004). Yeast hydrolysate reduces body fat of dietary obese rats. Phytotherapy Research, 18(11), 950–953.

    Article  CAS  PubMed  Google Scholar 

  • Kleemann, R., van Erk, M., Verschuren, L., van den Hoek, A. M., Koek, M., Wielinga, P. Y., et al. (2010). Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS ONE, 5(1), e8817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacroix, M., Bos, C., Leonil, J., Airinei, G., Luengo, C., Dare, S., et al. (2006). Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. American Journal of Clinical Nutrition, 84(5), 1070–1079.

    CAS  PubMed  Google Scholar 

  • Liaset, B., & Espe, M. (2008). Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials. Process Biochemistry, 43(1), 42–48.

    Article  CAS  Google Scholar 

  • Liaset, B., Hao, Q., Jorgensen, H., Hallenborg, P., Du, Z. Y., Ma, T., et al. (2011). Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome. Journal of Biological Chemistry, 286(32), 28382–28395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaset, B., Madsen, L., Hao, Q., Criales, G., Mellgren, G., Marschall, H. U., et al. (2009). Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1791(4), 254–262.

    Article  CAS  Google Scholar 

  • Lillefosse, H. H., Tastesen, H. S., Du, Z. Y., Ditlev, D. B., Thorsen, F. A., Madsen, L., et al. (2013). Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. Journal of Nutrition, 143(9), 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S., Thomas, T. C., Storlien, L. H., & Huang, X. F. (2000). Development of high fat diet-induced obesity and leptin resistance in C57BI/6J mice. International Journal of Obesity, 24(5), 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. Y., Wu, H. F., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3(1), 55–67.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Reports on NMR Spectroscopy, 38(38), 1–88.

    Article  CAS  Google Scholar 

  • Lu, S. C. (1999). Regulation of hepatic glutathione synthesis: Current concepts and controversies. FASEB Journal, 13(10), 1169–1183.

    CAS  PubMed  Google Scholar 

  • Lynch, C. J., Patson, B. J., Anthony, J., Vaval, A., Jefferson, L. S., & Vary, T. C. (2002). Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. American Journal of Physiology-Endocrinology and Metabolism, 283(3), E503–E513.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F. P. J., Dumas, M. E., Wang, Y. L., Legido-Quigley, C., Yap, I. K. S., Tang, H. R., et al. (2007a). A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 3, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, F. P. J., Wang, Y. L., Sprenger, N., Holmes, E., Lindon, J. C., Kochhar, S., et al. (2007b). Effects of probiotic Lactobacillus paracasei treatment on the host gut tissue metabolic profiles probed via magic-angle-spinning NMR spectroscopy. Journal of Proteome Research, 6(4), 1471–1481.

    Article  CAS  PubMed  Google Scholar 

  • Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC–MS. Analytical Chemistry, 82(18), 7779–7786.

    Article  CAS  PubMed  Google Scholar 

  • Moazzami, A. A., Bondia-Pons, I., Hanhineva, K., Juntunen, K., Antl, N., Poutanen, K., et al. (2012). Metabolomics reveals the metabolic shifts following an intervention with rye bread in postmenopausal women—a randomized control trial. Nutrition Journal, 11, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norskov, N. P., Hedemann, M. S., Laerke, H. N., & Knudsen, K. E. B. (2013). Multicompartmental nontargeted LC–MS metabolomics: Explorative study on the metabolic responses of rye fiber versus refined wheat fiber intake in plasma and urine of hypercholesterolemic pigs. Journal of Proteome Research, 12(6), 2818–2832.

    Article  PubMed  Google Scholar 

  • Reitelseder, S., Agergaard, J., Doessing, S., Helmark, I. C., Lund, P., Kristensen, N. B., et al. (2011). Whey and casein labeled with L-[1-C-13] leucine and muscle protein synthesis: Effect of resistance exercise and protein ingestion. American Journal of Physiology-Endocrinology and Metabolism, 300(1), E231–E242.

    Article  CAS  PubMed  Google Scholar 

  • Richards, S. E., Dumas, M. E., Fonville, J. M., Ebbels, T. M. D., Holmes, E., & Nicholson, J. K. (2010). Intra- and inter-omic fusion of metabolic profiling data in a systems biology framework. Chemometrics and Intelligent Laboratory Systems, 104(1), 121–131.

    Article  CAS  Google Scholar 

  • Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202(2), 190–202.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, M., Tanabe, S., Morimatsu, F., Nagao, K., Yanagita, T., Kato, N., et al. (2006). Consumption of pork-liver protein hydrolysate reduces body fat in otsuka long-evans tokushima fatty rats by suppressing hepatic lipogenesis. Bioscience, Biotechnology, and Biochemistry, 70(1), 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J. H., Yang, J. Y., Jeon, B. Y., Yoon, Y. J., Cho, S. N., Kang, Y. H., et al. (2011). H-1 NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. Journal of Proteome Research, 10(5), 2238–2247.

    Article  CAS  PubMed  Google Scholar 

  • Smilde, A. K., Westerhuis, J. A., & de Jong, S. (2003). A framework for sequential multiblock component methods. Journal of Chemometrics, 17(6), 323–337.

    Article  CAS  Google Scholar 

  • Stella, C., Beckwith-Hall, B., Cloarec, O., Holmes, E., Lindon, J. C., Powell, J., et al. (2006). Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 5(10), 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk, M. H., Dominy, J. E., Lee, J. I., & Coloso, R. M. (2006). Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. Journal of Nutrition, 136(6), 1652s–1659s.

    CAS  PubMed  Google Scholar 

  • Tateishi, N., Higashi, T., Naruse, A., Nakashima, K., Shiozaki, H., & Sakamoto, Y. (1977). Rat-liver glutathione—possible role as a reservoir of cysteine. Journal of Nutrition, 107(1), 51–60.

    CAS  PubMed  Google Scholar 

  • van den Berg, R. A., Rubingh, C. M., Westerhuis, J. A., van der Werf, M. J., & Smilde, A. K. (2009). Metabolomics data exploration guided by prior knowledge. Analytica Chimica Acta, 651(2), 173–181.

    Article  PubMed  Google Scholar 

  • Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1998). Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics, 12(5), 301–321.

    Article  CAS  Google Scholar 

  • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, 603–610.

    Article  Google Scholar 

  • Xu, Y., Correa, E., & Goodacre, R. (2013). Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: Application to meat spoilage detection. Analytical and Bioanalytical Chemistry, 405(15), 5063–5074.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., & Goodacre, R. (2012). Multiblock principal component analysis: An efficient tool for analyzing metabolomics data which contain two influential factors. Metabolomics, 8(1), S37–S51.

    Article  Google Scholar 

  • Yang, W. J., Wang, Y. W., Zhou, Q. F., & Tang, H. R. (2008). Analysis of human urine metabolites using SPE and NMR spectroscopy. Science in China Series B-Chemistry, 51(3), 218–225.

    Article  CAS  Google Scholar 

  • Yde, C. C., Westerhuis, J. A., Bertram, H. C., & Knudsen, K. E. B. (2012). Application of NMR-based metabonomics suggests a relationship between betaine absorption and elevated creatine plasma concentrations in catheterised sows. British Journal of Nutrition, 107(11), 1603–1615.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Morar, M., & Ealick, S. E. (2008). Structural biology of the purine biosynthetic pathway. Cellular and Molecular Life Sciences, 65(23), 3699–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nina Eggers for technical assistance. This work was financial supported by the Danish Council for Strategic Research (Project No. 2101-08-0053, ‘Health-promoting effects of milk-derived components’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Clement Yde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yde, C.C., Clausen, M.R., Ditlev, D.B. et al. Multi-block PCA and multi-compartmental study of the metabolic responses to intake of hydrolysed versus intact casein in C57BL/6J mice by NMR-based metabolomics. Metabolomics 10, 938–949 (2014). https://doi.org/10.1007/s11306-014-0623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0623-4

Keywords

Navigation