Skip to main content
Log in

A combination of untargeted and targeted metabolomics approaches unveils changes in the kynurenine pathway following cardiopulmonary resuscitation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The mechanisms responsible for post-resuscitation myocardial and cerebral dysfunction are not well understood, especially in the early post-resuscitation phases. In this investigation, we first adopted unbiased mass spectrometry-based metabolomic profiling to identify perturbations in circulating metabolites in a rat model of cardiac arrest and cardiopulmonary resuscitation. Our findings strongly indicated early alterations in a major route of the tryptophan catabolism, namely the kynurenines pathway, after resuscitation. Specific metabolites involved in the tryptophan catabolism were quantified absolutely using liquid chromatography-multiple reaction monitoring-mass spectrometry. Tryptophan plasma concentration fell significantly very early in the post-resuscitation phase, while its metabolites, l-kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and 5-hydroxyindoleacetic acid, rose significantly. Changes in their concentration reflected changes in rat post-resuscitation myocardial dysfunction. Elevated plasma level of kynurenic acid, 3-hydroxyanthranilic acid were associated with significant decrease in ejection fraction and stroke volume. It is well known that kynurenines pathway is involved in the pathogenesis of numerous central nervous system disorders. By implication, altered levels of tryptophan metabolites in the early post resuscitation phase might contribute to the degree of cognitive recovery. Our results suggest that kynurenine pathway is activated early following resuscitation from cardiac arrest and might account for the severity of post-resuscitation syndrome. Our explorative investigation indicate that metabolomics can help to clarify unexplored biochemical pathways in cardiopulmonary resuscitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3-HAA:

3-Hydroxyanthranilic acid

5-HAA:

5-Hydroxyanthranilic acid

5-HIAA:

5-Hydroxyindoleacetic acid

CA:

Cardiac arrest

CPR:

Cardiopulmonary resuscitation

FFA:

Free fatty acids

IDO:

Indoleamine-2,3-dioxygenase

KYN:

l-kynurenine

KYNA:

Kynurenic acid

S1P:

Sphingosine 1 phosphate

TRP:

Tryptophan

References

  • Abramson, N. S. (1991). A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial II Study Group. New England Journal of Medicine, 324, 1225–1231.

    Article  Google Scholar 

  • Adams Wilson, J. R., Morandi, A., Girard, T. D., et al. (2012). The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness. Critical Care Medicine, 40, 835–841.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, D., Lombardi, R., Rodriguez, G., Mitchell, M. M., & Marian, A. J. (2011). Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. European Journal of Clinical Investigation, 41, 527–538.

    Article  PubMed  Google Scholar 

  • Andine, P., Lehmann, A., Ellren, K., et al. (1988). The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection. Neuroscience Letters, 90, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Baranowski, M., & Gorski, J. (2011). Heart sphingolipids in health and disease. Advances in Experimental Medicine and Biology, 721, 41–56.

    Article  CAS  PubMed  Google Scholar 

  • Barderas, M. G., Laborde, C. M., Posada, M., et al. (2011). Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. Journal of Biomedicine and Biotechnology, 2011, 790132.

    Article  PubMed  Google Scholar 

  • Braidy, N., Grant, R., Brew, B. J., et al. (2009). Effects of kynurenine pathway metabolites on intracellular NAD synthesis and cell death in human primary astrocytes and neurons. International Journal of Tryptophan Research, 2, 61–69.

    CAS  PubMed  Google Scholar 

  • Brouns, R., Verkerk, R., Aerts, T., et al. (2010). The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochemical Research, 35, 1315–1322.

    Article  CAS  PubMed  Google Scholar 

  • Brown, C. G., Martin, D. R., Pepe, P. E., et al. (1992). A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. The Multicenter High-Dose Epinephrine Study Group. New England Journal of Medicine, 327, 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  • Changsirivathanathamrong, D., Wang, Y., Rajbhandari, D., et al. (2011). Tryptophan metabolism to kynurenine is a potential novel contributor to hypotension in human sepsis. Critical Care Medicine, 39, 2678–2683.

    CAS  PubMed  Google Scholar 

  • Chen, Y., & Guillemin, G. J. (2009). Kynurenine pathway metabolites in humans: disease and healthy states. International Journal of Tryptophan Research, 2, 1–19.

    PubMed  Google Scholar 

  • Chen, Y., Stankovic, R., Cullen, K. M., et al. (2010). The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotoxicity Research, 18, 132–142.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, S. S., Jui, J., Gunson, K., et al. (2004). Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. Journal of the American College of Cardiology, 44, 1268–1275.

    Article  PubMed  Google Scholar 

  • Darlington, L. G., Mackay, G. M., Forrest, C. M., et al. (2007). Altered kynurenine metabolism correlates with infarct volume in stroke. European Journal of Neuroscience, 26, 2211–2221.

    Article  CAS  PubMed  Google Scholar 

  • Dezfulian, C., Raat, N., Shiva, S., & Gladwin, M. T. (2007). Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovascular Research, 75, 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis, N. G., Youker, K. A., Rossen, R. D., et al. (1998). Cytokines and the microcirculation in ischemia and reperfusion. Journal of Molecular and Cellular Cardiology, 30, 2567–2576.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, S., Schwarcz, R., Rapoport, S. I., Takada, Y., & Smith, Q. R. (1991). Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. Journal of Neurochemistry, 56, 2007–2017.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, M., Tanaka, M., Toda, H., et al. (2012). High plasma 5-hydroxyindole-3-acetic acid concentrations in subjects with metabolic syndrome. Diabetes Care, 35, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima, T., Sone, Y., Mitsuhashi, S., Tomiya, M., & Toyo’oka, T. (2009). Alteration of kynurenic acid concentration in rat plasma following optically pure kynurenine administration: a comparative study between enantiomers. Chirality, 21, 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, L. E., Leopold, M. C., Huang, X., et al. (2000). 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry, 39, 7266–7275.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., Atherton, H., Shockcor, J., & Atzori, L. (2011). Metabolomics as a tool for cardiac research. Nature Reviews Cardiology, 8, 630–643.

    Article  CAS  PubMed  Google Scholar 

  • Gulaj, E., Pawlak, K., Bien, B., & Pawlak, D. (2010). Kynurenine and its metabolites in Alzheimer’s disease patients. Advances in Medical Sciences, 55, 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Hilmas, C., Pereira, E. F., Alkondon, M., et al. (2001). The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. Journal of Neuroscience, 21, 7463–7473.

    CAS  PubMed  Google Scholar 

  • Jaswal, J. S., Keung, W., Wang, W., Ussher, J. R., & Lopaschuk, G. D. (2011). Targeting fatty acid and carbohydrate oxidation: a novel therapeutic intervention in the ischemic and failing heart. Biochimica et Biophysica Acta, 1813, 1333–1350.

    Article  CAS  PubMed  Google Scholar 

  • Jung, I. D., Lee, M. G., Chang, J. H., et al. (2009). Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. Journal of Immunology, 182, 3146–3154.

    Article  CAS  Google Scholar 

  • Knapp, M. (2011). Cardioprotective role of sphingosine-1-phosphate. Journal of Physiology and Pharmacology, 62, 601–607.

    CAS  PubMed  Google Scholar 

  • Knapp, M., Baranowski, M., Czarnowski, D., et al. (2009). Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Medical Science Monitor, 15, CR490–CR493.

    CAS  PubMed  Google Scholar 

  • Krause, G. S., Kumar, K., White, B. C., Aust, S. D., & Wiegenstein, J. G. (1986). Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection. American Heart Journal, 111, 768–780.

    Article  CAS  PubMed  Google Scholar 

  • Krismer, A. C., Dunser, M. W., Lindner, K. H., et al. (2006). Vasopressin during cardiopulmonary resuscitation and different shock states: a review of the literature. American Journal of Cardiovascular Drugs, 6, 51–68.

    Article  CAS  PubMed  Google Scholar 

  • Lebuffe, G., Schumacker, P. T., Shao, Z. H., et al. (2003). ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. American Journal of Physiology Heart and Circulatory Physiology, 284, H299–H308.

    CAS  PubMed  Google Scholar 

  • Levraut, J., Iwase, H., Shao, Z. H., Vanden Hoek, T. L., & Schumacker, P. T. (2003). Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. American Journal of Physiology Heart and Circulatory Physiology, 284, H549–H558.

    CAS  PubMed  Google Scholar 

  • Lewis, G. D., Wei, R., Liu, E., et al. (2008). Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. Journal of Clinical Investigation, 118, 3503–3512.

    Article  CAS  PubMed  Google Scholar 

  • Locasale, J. W., Melman, T., Song, S., et al. (2012). Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Molecular and Cellular Proteomics, 11(6), M111.

    Article  PubMed  Google Scholar 

  • Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90, 207–258.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, A. S., Alegre, E., Diaz-Lagares, A., et al. (2008). Effect of 3-hydroxyanthranilic acid in the immunosuppressive molecules indoleamine dioxygenase and HLA-G in macrophages. Immunology Letters, 117, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Mandi, Y., & Vecsei, L. (2012). The kynurenine system and immunoregulation. Journal of Neural Transmission, 119, 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, M., Liem, D., Zhang, J., et al. (2009). Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. Journal of Molecular and Cellular Cardiology, 46, 268–277.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, M., Yusuf, S., Weir, G., et al. (2008). Combined metabolomic and proteomic analysis of human atrial fibrillation. Journal of the American College of Cardiology, 51, 585–594.

    Article  CAS  PubMed  Google Scholar 

  • Meybohm, P., Gruenewald, M., Albrecht, M., et al. (2009). Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling. PLoS ONE, 4, e7588.

    Article  PubMed  Google Scholar 

  • Midttun, O., Hustad, S., & Ueland, P. M. (2009). Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 23, 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Morita, T., Saito, K., Takemura, M., et al. (2001). 3-Hydroxyanthranilic acid, an l-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-gamma. Annals of Clinical Biochemistry, 38, 242–251.

    Article  CAS  PubMed  Google Scholar 

  • Myint, A. M. (2012). Kynurenines: from the perspective of major psychiatric disorders. FEBS Journal, 279, 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  • Neglia, D., De Caterina, A., Marraccini, P., et al. (2007). Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 293, H3270–H3278.

    Article  CAS  PubMed  Google Scholar 

  • Nolan, J. P., Soar, J., Zideman, D. A., et al. (2010). European resuscitation council guidelines for resuscitation 2010 section 1. Executive summary. Resuscitation, 81, 1219–1276.

    Article  PubMed  Google Scholar 

  • Nordstrom, A., & Lewensohn, R. (2010). Metabolomics: moving to the clinic. Journal of Neuroimmune Pharmacology, 5, 4–17.

    Article  PubMed  Google Scholar 

  • Nordstrom, A., Want, E., Northen, T., Lehtio, J., & Siuzdak, G. (2008). Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical Chemistry, 80, 421–429.

    Article  PubMed  Google Scholar 

  • Nozaki, K., & Beal, M. F. (1992). Neuroprotective effects of l-kynurenine on hypoxia–ischemia and NMDA lesions in neonatal rats. Journal of Cerebral Blood Flow and Metabolism, 12, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang, Y. B., Tan, Y., Comb, M., et al. (1999). Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and activation of caspase-like proteases. Journal of Cerebral Blood Flow and Metabolism, 19, 1126–1135.

    CAS  PubMed  Google Scholar 

  • Pawlak, D., Tankiewicz, A., & Buczko, W. (2001). Kynurenine and its metabolites in the rat with experimental renal insufficiency. Journal of Physiology and Pharmacology, 52, 755–766.

    CAS  PubMed  Google Scholar 

  • Reinhard, J. F., Jr. (2004). Pharmacological manipulation of brain kynurenine metabolism. Annals of the New York Academy of Sciences, 1035, 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, E. P., & Gerszten, R. E. (2012). Metabolomics and cardiovascular biomarker discovery. Clinical Chemistry, 58, 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Sabatine, M. S., Liu, E., Morrow, D. A., et al. (2005). Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868–3875.

    Article  CAS  PubMed  Google Scholar 

  • Sans, S., Kesteloot, H., & Kromhout, D. (1997). The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. European Heart Journal, 18, 1231–1248.

    Article  Google Scholar 

  • Shah, S. H., Bain, J. R., Muehlbauer, M. J., et al. (2010). Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Cardiology and Cardiovascular Genetics, 3, 207–214.

    Article  CAS  Google Scholar 

  • Siassi, F., Wang, M., Kopple, J. D., & Swendseid, M. E. (1977). Plasma tryptophan levels and brain serotonin metabolism in chronically uremic rats. Journal of Nutrition, 107, 840–845.

    CAS  PubMed  Google Scholar 

  • Stone, T. W. (1993). Neuropharmacology of quinolinic and kynurenic acids. Pharmacological Reviews, 45, 309–379.

    CAS  PubMed  Google Scholar 

  • Stoy, N., Mackay, G. M., Forrest, C. M., et al. (2005). Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. Journal of Neurochemistry, 93, 611–623.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S., Tang, W., Song, F., et al. (2010). The effects of epinephrine on outcomes of normothermic and therapeutic hypothermic cardiopulmonary resuscitation. Critical Care Medicine, 38, 2175–2180.

    Article  CAS  PubMed  Google Scholar 

  • Turer, A. T., Stevens, R. D., Bain, J. R., et al. (2009). Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation, 119, 1736–1746.

    Article  CAS  PubMed  Google Scholar 

  • Vakeva, A. P., Agah, A., Rollins, S. A., et al. (1998). Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation, 97, 2259–2267.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011a). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., et al. (2011b). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.

    Article  PubMed  Google Scholar 

  • Wang, Y., Liu, H., McKenzie, G., et al. (2010). Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine, 16, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Simonavicius, N., Wu, X., et al. (2006). Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. Journal of Biological Chemistry, 281, 22021–22028.

    Article  CAS  PubMed  Google Scholar 

  • Wonodi, I., Stine, O. C., Sathyasaikumar, K. V., et al. (2011). Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Archives of General Psychiatry, 68, 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743–760.

    Article  CAS  PubMed  Google Scholar 

  • Zadori, D., Klivenyi, P., Vamos, E., et al. (2009). Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. Journal of Neural Transmission, 116, 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, G., Jeoung, N. H., Burgess, S. C., et al. (2008). Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 294, H936–H943.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Kang, A., Dai, C., et al. (2012). Quantitative analysis of neurochemical panel in rat brain and plasma by liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 84, 10044–10051.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J.D. Baggott for help in preparing the manuscript. GR is currently recipient of an “Amiche del Mario Negri” fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pastorelli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunelli, L., Ristagno, G., Bagnati, R. et al. A combination of untargeted and targeted metabolomics approaches unveils changes in the kynurenine pathway following cardiopulmonary resuscitation. Metabolomics 9, 839–852 (2013). https://doi.org/10.1007/s11306-013-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0506-0

Keywords

Navigation