Skip to main content

Advertisement

Log in

The kynurenine system and immunoregulation

  • Basic Neurosciences, Genetics and Immunology - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

There is developing interest in the role of the kynurenines in the immune function. A considerable amount of evidence has accumulated as concerns interactions between the kynurenine pathway, cytokines and the nervous system. Indoleamine 2,3-dioxygenase (IDO) occupies a key position connecting the immune system and the kynurenine pathway. There are evidences of the immunosuppressive effect of IDO. Following the interferon (IFN)-mediated activation of antigen presenting cells, the induction of IDO and the kynurenine system exerts a counter-regulating effect, maintaining the homeostasis. Inhibition of T cell functions, activation of the regulatory T cells, and the inhibition of Natural Killer cells are among the important factors in the immunosuppressive effects of IDO and kynurenines. There is a close connection between cytokines (IFN-α, IFN-γ, TNF-α, TGF-β, IL-4 and IL-23) and the kynurenine system, and an imbalance in the TH1/TH2 cytokine profile may possibly lead to neurologic or psychiatric disorders. As the tryptophan metabolic pathway is activated by pro-inflammatory stimuli, the anti-inflammatory effect of kynurenic acid provides a further feedback mechanism in modulating the immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IDO:

Indoleamine 2,3-dioxygenase

TRY:

Tryptophan

KYN:

Kynurenine

KYNA:

Kynurenic acid

KMO:

Kynurenine 3-monooxygenase

KH:

KYN3-hydrolase

3-OH KYN:

3-Hydroxykynurenine

KYNU:

Kynureninase

3-HAA:

3-Hydroxyanthranilic acid

HAAO:

3-Hydroxyantranilate 3,4-dioxygenase

QUIN:

Quinolinic acid

NMDA:

N-methyl-d-aspartate

α7-nACh:

α7-Nicotinic acethylcholine

NK cells:

Natural killer cells

DC:

Dendritic cell

Treg :

Regulatory T cells

PMNs:

Polymorphonuclear cells

IFN:

Interferon

TNF-α:

Tumor necrosis factor-α

TGF-β:

Transforming growth factor-β

IL:

Interleukin

IL-2:

Interleukin-2

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

5-HT:

Serotonin

BBB:

Blood brain barrier

HMGB1:

High-mobility group box protein 1

HNP1-3:

Human neutrophil peptide 1-3

References

  • Andersson U, Wang HC, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang MH, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  PubMed  CAS  Google Scholar 

  • Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL (2004) Indoleamine 2, 3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol 61:67–77

    Article  PubMed  CAS  Google Scholar 

  • Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12:588–594

    Article  PubMed  CAS  Google Scholar 

  • Barry S, Clarke G, Scully P, Dinan TG (2009) Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 23:287–294

    Article  PubMed  CAS  Google Scholar 

  • Belladonna ML, Puccetti P, Orabona C, Fallarino F, Vacca C, Volpi C, Gizzi S, Pallotta MT, Fioretti MC, Grohmann U (2007) Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation 84:S17–S20

    Article  PubMed  CAS  Google Scholar 

  • Belladonna ML, Volpi C, Bianchi R, Vacca C, Orabona C, Pallotta MT, Boon L, Gizzi S, Fioretti MC, Grohmann U, Puccetti P (2008) Cutting edge: autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J Immunol 181:5194–5198

    PubMed  CAS  Google Scholar 

  • Belladonna ML, Orabona C, Grohmann U, Puccetti P (2009) TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol Med 15:41–49

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Carrier YJ, Gao WD, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  • Blobe GC, Schiemann WP, Lodish HF (2000) Mechanisms of disease: role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M (2002) Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 72:237–241

    Article  PubMed  CAS  Google Scholar 

  • Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L (2005) A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 174:2910–2918

    PubMed  CAS  Google Scholar 

  • Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160

    Article  PubMed  CAS  Google Scholar 

  • Brown RR, Lee CM, Kohler PC, Hank JA, Storer BE, Sondel PM (1989) Altered tryptophan and neopterin metabolism in cancer-patients treated with recombinant interleukin-2. Cancer Res 49:4941–4944

    PubMed  CAS  Google Scholar 

  • Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J, Rouas-Freiss N (2003) HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol 81:199–252

    Article  PubMed  CAS  Google Scholar 

  • Chaves AC, Cerávolo IP, Gomes JA, Zani CL, Romanha AJ, Gazzinelli RT (2001) IL-4 and IL-13 regulate the induction of indoleamine 2, 3-dioxygenase activity and the control of Toxoplasma gondii replication in human fibroblasts activated with IFN-gamma. Eur J Immunol 31:333–344

    Article  PubMed  CAS  Google Scholar 

  • Chomarat P, Rybak ME, Banchereau J (1998) Interleukin-4. In: Thomson A (ed) The cytokine handbook, 3rd edn. Academic Press, New York, pp 133–174

  • Chon SY, Hassanain HH, Gupta SL (1996) Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2, 3-dioxygenase gene. J Biol Chem 271:17247–17252

    Article  PubMed  CAS  Google Scholar 

  • Chung IY, Benveniste EN (1990) Tumor necrosis factor-alpha production by astrocytes—induction by lipopolysaccharide, IFN-gamma, and IL-1-beta. J Immunol 144:2999–3007

    PubMed  CAS  Google Scholar 

  • Daubener W, MacKenzie CR (1999) IFN-gamma activated indoleamine 2, 3-dioxygenase activity in human cells is an antiparasitic and an antibacterial effector mechanism. Adv Exp Med Biol 467:517–524

    Article  PubMed  CAS  Google Scholar 

  • de Waal Malefyt, R, Moore KW (1998) Interleukin-10. In: Thomson A (ed) The cytokine handbook, 3rd edn. Academic Press, New York, pp 333–364

  • Della Chiesa M, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R, Moretta L, Moretta A, Vitale M (2006) The tryptophan catabolite l-kynurenine inhibits the surface expression of NKp46-and NKG2D-activating receptors and regulates NK-cell function. Blood 108:4118–4125

    Article  PubMed  CAS  Google Scholar 

  • Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G (2010) Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun 398:420–425

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    PubMed  CAS  Google Scholar 

  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4(+)CD25(-) T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153

    PubMed  CAS  Google Scholar 

  • Fiers W (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199–212

    Article  PubMed  CAS  Google Scholar 

  • Fillit H, Ding W, Buee L, Kalman J, Altstiel L, Lawlor B, Wolfklein G (1991) Elevated circulating tumor-necrosis-factor levels in Alzheimers-disease. Neurosci Lett 129:318–320

    Article  PubMed  CAS  Google Scholar 

  • Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, Darlington LG (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122

    Article  PubMed  CAS  Google Scholar 

  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J Exp Med 196:459–468

    Article  PubMed  CAS  Google Scholar 

  • Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H, Seishima M (2006) The signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2, 3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappa B pathways, and synergistic effect of several proinflammatory cytokines. J Biochem 139:655–662

    Article  PubMed  CAS  Google Scholar 

  • Gal EM, Sherman AD (1980) l-kynurenine—its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239

    Article  PubMed  CAS  Google Scholar 

  • Gigler G, Szenasi G, Simo A, Levay G, Harsing LG, Sas K, Vecsei L, Toldi J (2007) Neuroprotective effect of l-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur J Pharmacol 564:116–122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Varo N, Alegre E, Diaz A, Melero I (2008) Immunosuppression routed via the kynurenine pathway: a biochemical and pathophysiologic approach. Adv Clin Chem 45:155–197

    Article  PubMed  CAS  Google Scholar 

  • González-Hernandez A, LeMaoult J, Lopez A, Alegre E, Caumartin J, Le Rond S, Daouya M, Moreau P, Carosella ED (2005) Linking two immuno-suppressive molecules: indoleamine 2, 3 dioxygenase can modify HLA-G cell-surface expression. Biol Reprod 73:571–578

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2, 3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23

    Article  PubMed  Google Scholar 

  • Harber M, Sundstedt A, Wraith D (2000) The role of cytokines in immunological tolerance: potential for therapy. Exp Rev Mol Med 1–20

  • Harris HE, Andersson U (2004) The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34:1503–1512

    Article  CAS  Google Scholar 

  • Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112:93–96

    Article  PubMed  CAS  Google Scholar 

  • Hassanain HH, Chon SY, Gupta SL (1993) Differential regulation of human indoleamine 2, 3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 268:5077–5084

    PubMed  CAS  Google Scholar 

  • Hill M, Tanguy-Royer S, Royer P, Chauveau C, Asghar K, Tesson L, Lavainne F, Remy S, Brion R, Huber FX, Heslan M, Rimbert M, Berthelot L, Moffett JR, Josien R, Gregoire M, Anegon I (2007) IDO expands human CD4(+)CD25(high) regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol 37:3054–3062

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuuqerque EX (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotic expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Kaszaki J, Palasthy Z, Erczes D, Racz A, Torday C, Varga G, Vecsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62

    PubMed  CAS  Google Scholar 

  • Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the l-kynurenine and quinolinic acid pools in brain. J Neurochem 82:258–268

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi P, Toldi J, Vecsei L (2004) Kynurenines in neurodegenerative disorders: therapeutic consideration. In: Vecsei L (ed) Frontiers in clinical neuroscience: neurodegeneration and neuroprotection, Adv Exp Med Biol, vol 541, Kluwer, New York, pp 169–183

  • Kocsis AK, Szabolcs A, Hofner P, Takács T, Farkas G, Boda K, Mándi Y (2009) Plasma concentrations of high-mobility group box protein1, soluble receptor for advanced glycation end products and circulating DNA in patients with acute pancreatitis. Pancreatology 9:383–391

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Boyd CAR, Sargent IL, Redman CWG (2003) Decreased tryptophan catabolism by placental indoleamine 2, 3-dioxygenase in preeclampsia. Am J Obstet Gynecol 188:719–726

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Boyd CAR, Spyropoulou I, Redman CWG, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL (2004) Indoleamine 2, 3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol 61:87–98

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt RM, Lee SJ, Kavathas PB, Cresswell P (2007) Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect Immun 75:5105–5117

    Article  PubMed  CAS  Google Scholar 

  • Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, Vodovotz Y, Billiar TR (2007) Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293:R1538–R1544

    Article  PubMed  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  • Lio D, Scola L, Crivello A, Bonafe M, Franceschi C, Olivieri F, Colonna-Romano G, Candore G, Caruso C (2002) Allele frequencies of +874T->a single nucleotide polymorphism at the first intron of interferon-gamma gene in a group of Italian centenarians. Exp Gerontol 37:315–319

    Article  PubMed  CAS  Google Scholar 

  • Lögters TT, Laryea MD, Altrichter J, Sokolowski J, Cinatl J, Reipen J, Linhart W, Windolf J, Scholz M, Wild M (2009) Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 32:29–34

    Article  PubMed  CAS  Google Scholar 

  • Lopez AS, Alegre E, LeMaoult J, Carosella E, Gonzalez A (2006) Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol 43:2151–2160

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Mihaylova L, De Ruyter M, Kubera M, Bosmans E (2007) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett 28:826–831

    PubMed  CAS  Google Scholar 

  • Mazza J, Rossi A, Weinberg JM (2010) Innovatives uses of tumor necrosis factor alpha inhibitors. Dermatol Clin 28:559–575

    Article  PubMed  CAS  Google Scholar 

  • McIlroy D, Tanguy-Royer S, Le Meur N, Guisle I, Royer PJ, Leger J, Meflah K, Gregoire M (2005) Profiling dendritic cell maturation with dedicated microarrays. J Leukoc Biol 78:794–803

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev Immunol 4:762–774

    Article  CAS  Google Scholar 

  • Miller CL, Llenos IC, Cwik M, Walkup J, Weis S (2008) Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int 52:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11:198–209

    Google Scholar 

  • Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81:247–265

    Article  PubMed  CAS  Google Scholar 

  • Molano A, Illarionov P, Besra GS, Putterman C, Porcelli SA (2008) Modulation of invariant natural killer T cell cytokine responses by indoleamine 2, 3-dioxygenase. Immunol Lett 117:81–90

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148

    Article  PubMed  Google Scholar 

  • Müller N, Schwarz MJ (2007) The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl 72:269–280

    Article  Google Scholar 

  • Müller N, Schwarz MJ (2010) Immune system and schizophrenia. Curr Immunol Rev 6:213–220

    Article  PubMed  Google Scholar 

  • Müller N, Myint AM, Schwarz MJ (2011) Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Curr Pharm Res 17:130–136

    Article  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Musso T, Gusella GL, Brooks A, Longo DL, Varesio L (1994) Interleukin-4 inhibits indoleamine 2, 3-dioxygenase expression in human monocytes. Blood 83:1408–1411

    PubMed  CAS  Google Scholar 

  • Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61:519–525

    Article  PubMed  CAS  Google Scholar 

  • Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripherial nervous systems. Curr Neurovasc Res 2:249–260

    Article  PubMed  Google Scholar 

  • O’Connor JC, Andre C, Wang YX, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2, 3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus calmette-guerin. J Neurosci 29:4200–4209

    Article  PubMed  CAS  Google Scholar 

  • Oxenkrug GF (2007) Genetic and hormonal regulation of tryptophan-kynurenine metabolism—implications for vascular cognitive Impairment, major depressive disorder, and aging. Ann NY Acad Sci 1122:35–49

    Article  PubMed  CAS  Google Scholar 

  • Oxenkrug GF (2010) Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Israel J Psychiatry 47:56–63

    Google Scholar 

  • Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118:75–85

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17:589–595

    Article  PubMed  CAS  Google Scholar 

  • Pisetsky DS, Erlandsson-Harris H, Andersson U (2008) High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 10:209

    Article  PubMed  CAS  Google Scholar 

  • Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 61:863–866

    Article  PubMed  CAS  Google Scholar 

  • Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappa B activation. Nat Rev Immunol 7:817–823

    Article  PubMed  CAS  Google Scholar 

  • Quinn K, Henriques M, Parker T, Slutsky AS, Zhang H (2008) Human neutrophil peptides: a novel potential mediator of inflammatory. Am J Physiol Heart Circ Physiol 295:1817–1824

    Article  CAS  Google Scholar 

  • Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    Article  PubMed  CAS  Google Scholar 

  • Raitala A, Pertovaara M, Karjalainen J, Oja SS, Hurme M (2005) Association of interferon-gamma +874(T/A) single nucleotide polymorphism with the rate of tryptophan catabolism in healthy individuals. Scand J Immunol 61:387–390

    Article  PubMed  CAS  Google Scholar 

  • Riedel M, Spellmann I, Schwarz MJ, Strassnig M, Sikorski C, Moller HJ, Muller N (2007) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 41:3–7

    Article  PubMed  Google Scholar 

  • Robinson CM, Hale PT, Carlin JM (2005) The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 25:20–30

    Article  PubMed  CAS  Google Scholar 

  • Robotka H, Toldi J, Vécsei L (2008) l-kynurenine: metabolism and mechanism of neuroprotection. Future Neurol 3:169–188

    Article  CAS  Google Scholar 

  • Romagnani S (1999) Th1/Th2 cells. Inflamm Bowel Dis 5:285–294

    Article  PubMed  CAS  Google Scholar 

  • RouasFreiss N, Goncalves RMB, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525

    Article  CAS  Google Scholar 

  • Rubtsov YP, Rudensky AY (2007) TGF beta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7:443–453

    Article  PubMed  CAS  Google Scholar 

  • Sarkar SA, Wong R, Hackl SI, Moua O, Gill RG, Wiseman A, Davidson HW, Hutton JC (2007) Induction of indoleamine 2, 3-dioxygenase by interferon-gamma in human islets. Diabetes 56:72–79

    Article  PubMed  CAS  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid—an endogenous metabolite that produces axon-sparing lesions in rat-brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  • Song H, Park H, Kim Y-S, Kim KD, Lee H-K, Cho D-H, Yang J-W, Hur DY (2011) l-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol. doi:10.1016/j.intimp.2011.02.005

  • Steckel NK, Koldehoff M, Beelen DW, Elmaagacli AH (2005) Indoleamine 2, 3-dioxygenase expression in monocytes of healthy nonpregnant women after induction with human choriongonadotropine. Scand J Immunol 61:213–214

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  • Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21:149–154

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Progr Neurobiol 64:185–218

    Article  CAS  Google Scholar 

  • Stone TW (2007) Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci 25:2656–2665

    Article  PubMed  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Perkins MN (1981) Quinolinic acid—a potent endogenous excitant at amino-acid receptors in CNS. Eur J Pharmacol 72:411–412

    Article  PubMed  CAS  Google Scholar 

  • Sundén-Cullberg J, Norrby-Teglund A, Treutiger CJ (2006) The role of high mobility group box-1 protein in severe sepsis. Curr Opin Infect Dis 19:231–236

    Article  PubMed  CAS  Google Scholar 

  • Swartz KJ, During MJ, Freese A, Beal MF (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973

    PubMed  CAS  Google Scholar 

  • Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  PubMed  CAS  Google Scholar 

  • Tiszlavicz Z, Németh B, Fülöp F, Vécsei L, Tápai K, Ocsovszky I, Mándi Y. (2011) Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils. Naunyn Schmiedebergs Arch Pharmacol. doi:10.1007/s00210-011-0605-2

  • Trinchieri G (1989) Biology of natural-killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  • Van Gool AR, Verkerk R, Fekkes D, Bannink M, Sleijfer S, Kruit WHJ, van der Holt B, Scharpe S, Eggermont AMM, Stoter G, Hengeveld MW (2008) Neurotoxic and neuroprotective metabolites of kynurenine in patients with renal cell carcinoma treated with interferon-alpha: course and relationship with psychiatric status. Psychiatry Clin Neurosci 62:597–602

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Beal MF (1991) Comparative behavioral and neurochemical studies with striatal kainic acid-lesioned or quinolinic acid-lesioned rats. Pharmacol Biochem Behav 39:473–478

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol-induced and NMDA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238

    Article  PubMed  CAS  Google Scholar 

  • Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Simonavicius N, Wu XS, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  PubMed  CAS  Google Scholar 

  • Wichers MC, Maes M (2004) The role of indoleamine 2, 3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 29:11–17

    PubMed  Google Scholar 

  • Wirleitner B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Gabriel CL, Parekh VV, Van Kaer L (2009) Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens 73:535–545

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zhang G-X, Ciric B, Rostami A (2008) IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol Lett 121:1–6

    Article  PubMed  CAS  Google Scholar 

  • Yadav MC, Burudi EM, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS (2007) IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 55:1385–1396

    Article  PubMed  Google Scholar 

  • Yamamura T, Sakuishi K, Illes Z, Miyake S (2007) Understanding the behavior of invariant NKT cells in autoimmune diseases. J Neuroimmunol 191:8–15

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296

    Article  PubMed  CAS  Google Scholar 

  • Zádori D, Klivényi P, Vámos E, Fülöp F, Toldi J, Vécsei L (2009) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette Mándi.

Additional information

Special issue relating to Kynurenines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mándi, Y., Vécsei, L. The kynurenine system and immunoregulation. J Neural Transm 119, 197–209 (2012). https://doi.org/10.1007/s00702-011-0681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0681-y

Keywords

Navigation