Skip to main content
Log in

NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar SV, Singh RK, Jadegoud Y, Dhole TN, Ayyagari A, Gowda GAN (2007) In vitro 1H NMR studies of RD human cell infection with Echovirus 11. NMR Biomed 20:422–428

    Article  CAS  Google Scholar 

  • Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, Saini S, Maravilla KR, Feldman DE, Schmiedl UP, Brunberg JA, Francis IR, Harms SE, Som PM, Tempany CM (2003) Evaluation of neck and body metastases to nodes with Ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228:777–788

    Article  Google Scholar 

  • Arbad AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18:383–389

    Article  Google Scholar 

  • Bailey NJC, Oven M, Holmes E, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequences of cadmium exposure in silence cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry 62:851–858

    Article  CAS  Google Scholar 

  • Bollard ME, Garrod S, Holmes E, Lindon JC, Humpfer E, Spraul M, Nicholson JK (2000) High-resolution (1)H and (1)H-(13)C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med 44:201–207

    Article  CAS  Google Scholar 

  • Briley-Saebo K, Bjørnerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM (2004) Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 316:315–323

    Article  CAS  Google Scholar 

  • Bulte JWM, Ma LD, Magin RL, Kamman RL, Hulstraert CE, Go KG, The TH, de Leij L (1993) Selective MR imaging of labeled human peripheral blood mononuclear cells by liposomes mediated incorporation of dextran-magnetic particles. Magn Reson Med 29:32–37

    Article  CAS  Google Scholar 

  • Bundy JG, Lenz EM, Bailey NJ, Gavaghan CL, Svendsen C, Spurgeon D, Hankard PK, Osborn D, Weeks JM, Trauger SA, Speir P, Sanders I, Lindon JC, Nicholoson JK, Tang HR (2002) Metabonomic assessment of toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm eisenia veneta (ROSA): identification of new endogenous biomarkers. Environ Toxicol Chem 21:1966–1972

    CAS  Google Scholar 

  • Bundy JG, Iyer NG, Gentile MS, Hu DE, Kettunen M, Maia AT, Thorne NP, Brenton JD, Caldas C, Brindle KM (2006) Metabolic consequences of p300 gene deletion in human colon cancer cells. Cancer Res 66:7606–7614

    Article  CAS  Google Scholar 

  • Coen M, Wilson ID, Nicholson JK, Tang HR, Lindon JC (2004) Probing molecular dynamics in chromatographic systems using high-resolution H-1 magic-angle-spinning NMR spectroscopy: interaction between p-xylene and c18-bonded silica. Anal Chem 76:3023–3028

    Article  CAS  Google Scholar 

  • Daldrup-Link HE, Rudelius M, Oostendorp RAJ, Settles M, Piontek G, Metz S, Rosenbrock H, Keller U, Heinzmann U, Rummeny EJ, Schlegel J, Link TM (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  Google Scholar 

  • Dousset V, Ballarino L, Delalande C, Coussemacq M, Canioni P, Petry KG, Caillé JM (1999) Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. Am J Neuroradiol 20:223–227

    CAS  Google Scholar 

  • Duarte IF, Marques J, Ladeirinha AF, Rocha C, Lamego I, Calheiros R, Silva TM, Marques MPM, Melo JB, Carreira IM, Gil AM (2009) Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 81:5023–5032

    Article  CAS  Google Scholar 

  • Fabene PF, Marzola P, Sbarbati A, Bentivoglio M (2003) Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage. NeuroImage 18:375–389

    Article  CAS  Google Scholar 

  • Griffin JL, Mann CJ, Scott J, Shoulders CC, Nicholson JK (2001) Choline containing metabolites during cell transfection: an insight into magnetic resonance spectroscopy detectable changes. FEBS Lett 509:263–266

    Article  CAS  Google Scholar 

  • Griffin JL, Bollard M, Nicholson JK, Bhakoo K (2002) Spectral profiles of cultured neuronal and glial cells derived from HRMAS H-1 NMR spectroscopy. NMR Biomed 15:375–384

    Article  CAS  Google Scholar 

  • Griffin JL, Pole JCM, Nicholson JK, Carmichael PL (2003) Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim Biophys Acta 1619:151–158

    CAS  Google Scholar 

  • Halbreich A, Groman EV, Raison D, Bounchaud C, Paturance S (2002) Damage to the protein synthesizing apparatus in mouse liver in vivo by magnetocytolysis in the presence of hepatospecific magnetic nanoparticles. J Magn Mater 248:276–285

    Article  CAS  Google Scholar 

  • Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  CAS  Google Scholar 

  • Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565

    Article  CAS  Google Scholar 

  • Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W (2005) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferring receptor pathways. Magn Reson Med 40:236–242

    Article  Google Scholar 

  • LaConte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. Nanotoday 32–38

  • Lamers RJAN, Wessels ECHH, van de Sandt JJM, Venema K, Schaafsma G, van der Greef J, van Nesselrooij JHJ (2003) A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic fingerprinting. J Nutr 133:3080–3084

    CAS  Google Scholar 

  • Li JV, Holmes E, Saric J, Keiser J, Dirnhofer S, Ultzinger J, Wang YL (2009) Metabolic profiling of a schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy. Int J Parasitol 39:547–558

    Article  CAS  Google Scholar 

  • Mazurek S, Eigenbroadt E (2003) The tumor metabolome. Anticancer Res 23:1149–1154

    CAS  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2001) Exercise physiology: energy, nutrition and human performance, Chapter 4, 5th edn. Lippincott Williams & Wilkins ISBN 0781725445

  • Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  Google Scholar 

  • Metz S, Lohr S, Settles M, Beer A, Woertler K, Rummeny EJ, Daldrup-Link HE (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 16:598–607

    Article  Google Scholar 

  • Miccheli AT, Miccheli A, Di Clemente R, Valerio M, Coluccia P, Bizzari M, Conti F (2006) NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim Biophys Acta 1721:98–106

    Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  Google Scholar 

  • Nune SK, Gunda P, Thallapally P, Lin YY, Laird Forrest M, Berkland CJ (2009) Expert opinion on drug delivery. Expert Opin Drug Deliv 6:1175–1194

    Article  CAS  Google Scholar 

  • Okon E, Pouliquen D, Okon P, Kovaleva ZV, Stepanova TP, Lavit SG, Kudryavtsev BN, Jallet P (1994) Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study. Lab Invest 71:895–903

    CAS  Google Scholar 

  • Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P (1991) Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging 9:275–283

    Article  CAS  Google Scholar 

  • Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles—mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39:56–63

    Article  CAS  Google Scholar 

  • Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferrucci JT (1987) Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162:211–216

    CAS  Google Scholar 

  • Saksena MA, Saokar A, Harisinghani MG (2006) Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol 58:367–374

    Article  Google Scholar 

  • Shen T, Weissleder R, Papisov M, Bogdanov A, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29:599–604

    Article  CAS  Google Scholar 

  • Simpson MJ, McKelvie JR (2009) Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal Bioanal Chem 394:137–149

    Article  CAS  Google Scholar 

  • Sychrová H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53(Suppl. 1):S91–S98

    Google Scholar 

  • Tang HR, Wang YL (2006) Metabonomics: a revolution in progress. Prog Biochem Biophys 33:401–417

    CAS  Google Scholar 

  • Wang YL, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, Singer BH, Utzinger J (2004) Metabonomic investigations in mice infected with schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci USA 101:12676–12681

    Article  CAS  Google Scholar 

  • Wang YL, Tang HR, Holmes E, Lindon JC, Turini ME, Sprenger N, Bergonzelli G, Fay LB, Kochhar S, Nicholson JK (2005) Biochemical characterization of rat intestine development using high-resolution magic-angle-spinning H NMR spectroscopy and multivariate data analysis. J Proteome Res 4:1324–1329

    Article  CAS  Google Scholar 

  • Wang YL, Holmes E, Tang HR, Lindon JC, Sprenger N, Turini ME, Bergonzelli G, Fay LB, Kochhar S, Nicholson JK (2006) Experimental metabonomic model of dietary variation and stress interactions. J Proteome Res 5:1535–1542

    Article  CAS  Google Scholar 

  • Wang YL, Holmes E, Comelli EM, Fotopoulos G, Dorta G, Tang HR, Rantalainen MJ, Lindon JC, Corthsy-Theulaz IE, Fay LB, Kochhar S, Nicholson JK (2007) Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning H NMR spectroscopy. J Proteome Res 6:3944–3951

    Article  CAS  Google Scholar 

  • Wang YL, Cloarec O, Tang HR, Lindon JC, Noimes E, Kochhar S, Nicholson JK (2008) Magic angle spinning NMR and H-1-P-31 heteronuclear statistical total correlation spectroscopy of intact human gut biopsies. Anal Chem 80:1058–1066

    Article  CAS  Google Scholar 

  • Wei L, Liao PQ, Wu HF, Li XJ, Pei FK, Li WS, Wu YJ (2009) Metabolic profiling studies on the toxicological effects of realgar in rats by H-1 NMR spectroscopy. Toxicol Appl Pharm 234:314–325

    Article  CAS  Google Scholar 

  • Weishaupt D, Hetzer FH, Ruehm SG, Patak MA, Schmidt M, Debatin JF (2000) Three-dimensional contrast-enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study. Eur Radiol 10:1958–1964

    Article  CAS  Google Scholar 

  • Weissleder R, Cheng HC, Bogdanova A Jr, Bogdanov A (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  CAS  Google Scholar 

  • Yang MS, Yu LC, Gupta RC (2005) Analysis of multiple metabolomic subset in vitro: methodological considerations. Toxicol Mech Methods 15:29–32

    Article  CAS  Google Scholar 

  • Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, Tang H, Deng F (2007) Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 6:2605–2614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the National Natural Science Foundation of China (20605025, 20825520, and 20921004), and the Chinese Academy of Sciences. We also thank Dr. Hang Zhu, Wuhan Institute of Physics and Mathematics, for modifying the matlab scripts used for color-coded loading plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiru Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Zhao, J., Hao, F. et al. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism. J Nanopart Res 13, 2049–2062 (2011). https://doi.org/10.1007/s11051-010-9959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9959-5

Keywords

Navigation