Skip to main content

Advertisement

Log in

Magic angle spinning NMR spectroscopic metabolic profiling of gall bladder tissues for differentiating malignant from benign disease

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Gall bladder tissue specimens obtained from 112 patients were examined by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Fifty one metabolites were identified by combination of one and two-dimensional NMR spectra. To our knowledge, this is the first report on metabolic profiling of gall bladder tissues using HR-MAS NMR spectroscopy. Metabolic profiles were evaluated for differentiation between benign Chronic Cholecystitis (CC, n = 66) and xantho-granulomatous cholecystitis (XGC, n = 21) and malignant gall bladder cancer (GBC, n = 25). Increase in choline containing compounds, amino acids, taurine, nucleotides and lactate as common metabolites were observed in malignant tissues whereas lipid content was found low as compared to benign tissues. Principal component analysis obtained from the NMR data showed clear distinction between CC and GBC tissue specimens; however, 27 % of XGC tissues were classified with GBC. The partial least square discriminant analysis (PLS-DA) multivariate analysis between benign (CC, XGC) and malignant (GBC) on the training data set (CC; n = 51, XGC; n = 15, GBC; n = 19 tissues specimens) provided 100 % sensitivity and 94.12 % specificity. This PLS-DA model when executed on the spectra of unknown tissue specimens (CC; n = 15, XGC; n = 6, GBC; n = 6) classified them into the three histological categories with more than 95 % of diagnostic accuracy. Non-invasive in vivo MRS technique may be used in future to differentiate between benign (CC and XGC) and malignant (GBC) gall bladder diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BCA:

Branch chain amino acids

CC:

Chronic cholecystitis

CPMG:

Carr-purcell-meiboom-gill

DQF-COSY:

Double quantum filtered-correlation spectroscopy

GBC:

Gall bladder cancer

HR-MAS:

High resolution-magic angle spinning

PLS-DA:

Partial least square regression discriminant analysis

PCA:

Principal component analysis

XGC:

Xantho-granulomatous cholecystitis

References

  • Beckonert, O., Coen, M., Keun, H. C., Wang, Y., Ebbels, T. M., Holmes, E., et al. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5(6), 1019–1032.

    Article  CAS  PubMed  Google Scholar 

  • Beloueche-Babari, M., Peak, J. C., Jackson, L. E., Tiet, M. Y., Leach, M. O., & Eccles, S. A. (2009). Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Molecular Cancer Therapeutics, 8(5), 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  • Benbow, E. W. (1989). Xanthogranulomatous cholecystitis associated with carcinoma of the gallbladder. Postgraduate Medical Journal, 65(766), 528–531.

    Article  CAS  PubMed  Google Scholar 

  • Benbow, E. W. (1990). Xanthogranulomatous cholecystitis. British Journal of Surgery, 77(3), 255–256.

    Article  CAS  PubMed  Google Scholar 

  • Benbow, E. W., & Taylor, P. M. (1988). Simultaneous xanthogranulomatous cholecystitis and primary adenocarcinoma of gallbladder. Histopathology, 12(6), 672–675.

    Article  CAS  PubMed  Google Scholar 

  • Bharti, S. K., & Roy, R. (2012). Quantitative 1H NMR spectroscopy. Trends in Analytical Chemistry, 35, 5–26.

    Article  CAS  Google Scholar 

  • Bharti, S. K., Bhatia, A., Tewari, S. K., Sidhu, O. P., & Roy, R. (2011). Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal. Magnetic Resonance in Chemistry, 49(10), 659–667.

    Article  CAS  PubMed  Google Scholar 

  • Bolan, P. J., Meisamy, S., Baker, E. H., Lin, J., Emory, T., Nelson, M., et al. (2003). In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magnetic Resonance in Medicine, 50(6), 1134–1143.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M. D., Sitter, B., Bathen, T. F., Bofin, A., Lønning, P. E., Lundgren, S., et al. (2012). Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR in Biomedicine, 25(2), 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Chan, E. C., Koh, P. K., Mal, M., Cheah, P. Y., Eu, K. W., Backshall, A., et al. (2009). Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). Journal of Proteome Research, 8(1), 352–361.

    Article  CAS  PubMed  Google Scholar 

  • Chang, B. J., Kim, S. H., Park, H. Y., Lim, S. W., Kim, J., Lee, K. H., et al. (2010). Distinguishing xanthogranulomatous cholecystitis from the wall-thickening type of early-stage gallbladder cancer. Gut and Liver, 4(4), 518–523.

    Article  PubMed  Google Scholar 

  • Cheng, L. L., Chang, I. W., Louis, D. N., & Gonzalez, R. G. (1998). Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Research, 58(9), 1825–1832.

    CAS  PubMed  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabolomic data sets. Analytical Chemistry, 78, 2262–2267.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, V. K., Prakash, A., Gupta, A., Pandey, M., Gautam, A., Kumar, M., et al. (1998). Xanthogranulomatous cholecystitis. Digestive Diseases and Sciences, 43(5), 940–942.

    Article  CAS  PubMed  Google Scholar 

  • Duportet, X., Aggio, R., Carneiro, S., & Villas-Bôas, S. (2011). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8(3), 410–421.

    Google Scholar 

  • Elwood, D. R. (2008). Cholecystitis. Surgical Clinics of North America, 88(6), 1241–1252.

    Article  PubMed  Google Scholar 

  • Fisher, R. A., & Yates, F. (1957). Statistical tables for biological, agricultural, and medical research (5th ed.). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Ghosh, M., Sakhuja, P., & Agarwal, A. K. (2011). Xanthogranulomatous cholecystitis: A premalignant condition? Hepatobiliary & pancreatic diseases international, 10(2), 179–184.

    Article  CAS  Google Scholar 

  • Glunde, K., Jacobs, M. A., & Bhujwalla, Z. M. (2006). Choline metabolism in cancer: Implications for diagnosis and therapy. Expert Review of Molecular Diagnostics, 6(6), 821–829.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, Z. D., & Ishak, K. G. (1981). Xanthogranulomatous cholecystitis. American Journal of Surgical Pathology, 5(7), 653–659.

    Article  CAS  PubMed  Google Scholar 

  • Gribbestad, I. S., Petersen, S. B., Fjosne, H. E., Kvinnsland, S., & Krane, J. (1994). 1H NMR spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-involved breast tissue. NMR in Biomedicine, 7(4), 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4(7), 551–561.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. K., & Shukla, V. K. (2005). Gall Bladder cancer etiopathology and treatment. Health Administrator, 17(1), 134–142.

    Google Scholar 

  • Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6(17), 4716–4723.

    Article  CAS  PubMed  Google Scholar 

  • Houston, J. P., Collins, M. C., Cameron, I., Reed, M. W., Parsons, M. A., & Roberts, K. M. (1994). Xanthogranulomatous cholecystitis. British Journal of Surgery, 81(7), 1030–1032.

    Article  CAS  PubMed  Google Scholar 

  • ICMR. (1996). Annual report of population based cancer registries of the National Cancer Registry Programme (1993) (p. 18). New Delhi: ICMR Publication.

  • Jayalakshmi, K., Sonkar, K., Behari, A., Kapoor, V. K., & Sinha, N. (2011). Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy. NMR in Biomedicine, 24(4), 335–342.

    CAS  PubMed  Google Scholar 

  • Jessurun, J., & Albores-Saavendra, J. (1996). Gallbladder and extrahepatic biliary ducts Vol. 2 anderson’s pathology. Saint Louis: CV Mosby.

  • Kapoor, V. K. (2007). Advanced gallbladder cancer: Indian “middle path”. Journal of Hepato-Biliary-Pancreatic Surgery, 14(4), 366–373.

    Article  PubMed  Google Scholar 

  • Karabulut, Z., Besim, H., Hamamci, O., Bostanoglu, S., & Korkmaz, A. (2003). Xanthogranulomatous cholecystitis. Retrospective analysis of 12 cases. Acta Chirurgica Belgica, 103(3), 297–299.

    CAS  PubMed  Google Scholar 

  • Kim, P. N., Lee, S. H., Gong, G. Y., Kim, J. G., Ha, H. K., Lee, Y. J., et al. (1999). Xanthogranulomatous cholecystitis: Radiologic findings with histologic correlation that focuses on intramural nodules. AJR. American Journal of Roentgenology, 172(4), 949–953.

    CAS  PubMed  Google Scholar 

  • Krishnani, N., Shukla, S., Jain, M., Pandey, R., & Gupta, R. K. (2000). Fine needle aspiration cytology in xanthogranulomatous cholecystitis, gallbladder adenocarcinoma and coexistent lesions. Acta Cytologica, 44(4), 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, A. H., & Sakaida, N. (2007). Simultaneous presence of xanthogranulomatous cholecystitis and gallbladder cancer. Journal of Gastroenterology, 42(8), 703–704.

    Article  PubMed  Google Scholar 

  • Lane, M., & Gardner, D. K. (2005). Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. Journal of Biological Chemistry, 280(18), 18361–18367.

    Article  CAS  PubMed  Google Scholar 

  • Lazcano-Ponce, E. C., Miquel, J. F., Munoz, N., Herrero, R., Ferrecio, C., Wistuba, I. I., et al. (2001). Epidemiology and molecular pathology of gallbladder cancer. CA: A Cancer Journal for Clinicians, 51(6), 349–364.

    Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008). Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annual Review of Analytical Chemistry, 1(1), 45–69.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., & Everett, J. R. (2000). Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance, 12(5), 289–320.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G., & Nicholson, J. K. (2004). Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 9(1), 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, J. I., Elizalde, J. M., & Calvo, M. A. (1991). Xanthogranulomatous cholecystitis associated with gallbladder adenocarcinoma. A clinicopathological study of 5 cases. Tumori, 77(4), 358–360.

    CAS  PubMed  Google Scholar 

  • Makino, I., Yamaguchi, T., Sato, N., Yasui, T., & Kita, I. (2009). Xanthogranulomatous cholecystitis mimicking gallbladder carcinoma with a false-positive result on fluorodeoxyglucose PET. World Journal of Gastroenterology, 15(29), 3691–3693.

    Article  PubMed  Google Scholar 

  • Markley, J. L., Anderson, M. E., Cui, Q., Eghbalnia, H. R., Lewis, I. A., Hegeman, A. D., et al. (2007). New bioinformatics resources for metabolomics. Pacific Symposium on Biocomputing, 12, 157–168.

    Article  Google Scholar 

  • Martinez-Granados, B., Morales, J. M., Rodrigo, J. M., Del Olmo, J., Serra, M. A., Ferrandez, A., et al. (2011). Metabolic profile of chronic liver disease by NMR spectroscopy of human biopsies. International Journal of Molecular Medicine, 27(1), 111–117.

    CAS  PubMed  Google Scholar 

  • McAndrew, P. F. (1986). Fat metabolism and cancer. Surgical Clinics of North America, 66(5), 1003–1012.

    CAS  PubMed  Google Scholar 

  • McFate, T., Mohyeldin, A., Lu, H., Thakar, J., Henriques, J., Halim, N. D., et al. (2008). Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. Journal of Biological Chemistry, 283(33), 22700–22708.

    Article  CAS  PubMed  Google Scholar 

  • Misra, M. C., & Guleria, S. (2006). Management of cancer gallbladder found as a surprise on a resected gallbladder specimen. Journal of Surgical Oncology, 93(8), 690–698.

    Article  PubMed  Google Scholar 

  • Misra, D., Gupta, V., Sonkar, A. A., Bajpai, U., & Roy, R. (2008). Proton HR-MAS NMR spectroscopic characterization of metabolites in various human organ tissues: Pancreas, brain and liver from trauma cases. Physiological Chemistry and Physics and Medical NMR, 40, 67–88.

    CAS  PubMed  Google Scholar 

  • Orth, K., & Beger, H. G. (2000). Gallbladder carcinoma and surgical treatment. Langenbecks Archives of Surgery, 385(8), 501–508.

    Article  CAS  Google Scholar 

  • Pandey, M., Vishwakarma, R. A., Gautam, A., Khatri, A. K., Roy, S. K., & Shukla, V. K. (1995). Bile, bacteria and gallbladder carcinogenesis. Journal of Surgical Oncology, 58, 282–283.

    Article  CAS  PubMed  Google Scholar 

  • Parra, J. A., Acinas, O., Bueno, J., Guezmes, A., Fernandez, M. A., & Farinas, M. C. (2000). Xanthogranulomatous cholecystitis: Clinical, sonographic, and CT findings in 26 patients. AJR. American Journal of Roentgenology, 174(4), 979–983.

    CAS  PubMed  Google Scholar 

  • Pavlides, S., Tsirigos, A., Migneco, G., Whitaker-Menezes, D., Chiavarina, B., Flomenberg, N., et al. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505.

    Article  CAS  PubMed  Google Scholar 

  • Roa, I., Araya, J. C., Villaseca, M., De Aretxabala, X., Riedemann, P., Endoh, K., et al. (1996). Preneoplastic lesions and gallbladder cancer: An estimate of the period required for progression. Gastroenterology, 111(1), 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Roa, I., de Aretxabala, X., Araya, J. C., & Roa, J. (2006). Preneoplastic lesions in gallbladder cancer. Journal of Surgical Oncology, 93(8), 615–623.

    Article  PubMed  Google Scholar 

  • Roa, I., Aretxabala, Xd, & Wistuba, I. I. (2009). Histopathology and Molecular Pathogenesis of Gallbladder Cancer. In C. R. Thomos & C. D. Fuller (Eds.), Biliary tract and gallbladder cancer: Diagnosis and therapy. New York: Demos Medical Publishing.

    Google Scholar 

  • Roberts, K. M., & Parsons, M. A. (1987). Xanthogranulomatous cholecystitis: Clinicopathological study of 13 cases. Journal of Clinical Pathology, 40(4), 412–417.

    Article  CAS  PubMed  Google Scholar 

  • Rocha, C. u. M, Barros, A. n. S., Gil, A. M., Goodfellow, B. J., Humpfer, E., Spraul, M., et al. (2009). Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. Journal of Proteome Research, 9(1), 319–332.

    Article  Google Scholar 

  • Ros, P. R., & Goodman, Z. D. (1997). Xanthogranulomatous cholecystitis versus gallbladder carcinoma. Radiology, 203(1), 10–12.

    CAS  PubMed  Google Scholar 

  • Schirmer, B. D., Winters, K. L., & Edlich, R. F. (2005). Cholelithiasis and cholecystitis. Journal of Long-Term Effects of Medical Implants, 15(3), 329–338.

    Article  PubMed  Google Scholar 

  • Shen, M. R., Chou, C. Y., & Ellory, J. C. (2001). Swelling-activated taurine and K+ transport in human cervical cancer cells: Association with cell cycle progression. Pflugers Archiv. European Journal of Physiology, 441(6), 787–795.

    Article  CAS  PubMed  Google Scholar 

  • Sitter, B., Sonnewald, U., Spraul, M., Fjösne, H. E., & Gribbestad, I. S. (2002). High-resolution magic angle spinning MRS of breast cancer tissue. NMR in Biomedicine, 15(5), 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Sitter, B., Lundgren, S., Bathen, T. F., Halgunset, J., Fjosne, H. E., & Gribbestad, I. S. (2006). Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR in Biomedicine, 19(1), 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Sitter, B., Bathen, T. F., Tessem, M.-B., & Gribbestad, I. S. (2009). High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Progresss in Nuclear Magnetic Resonance Spectroscopy, 54(3), 239–254.

    Article  CAS  Google Scholar 

  • Sitter, B., Bathen, T. F., Singstad, T. E., Fjøsne, H. E., Lundgren, S., Halgunset, J., et al. (2010). Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR in Biomedicine, 23(4), 424–431.

    CAS  PubMed  Google Scholar 

  • Srivastava, S., Roy, R., Gupta, V., Tiwari, A., Srivastava, A., & Sonkar, A. (2011). Proton HR-MAS MR spectroscopy of oral squamous cell carcinoma tissues: An ex vivo study to identify malignancy induced metabolic fingerprints. Metabolomics, 7(2), 278–288.

    Article  CAS  Google Scholar 

  • Stenman, K., Surowiec, I., Antti, H., Riklund, K., Stattin, P., Bergh, A., et al. (2010). Detection of local prostate metabolites by HRMAS NMR spectroscopy: A comparative study of human and rat prostate tissues. Magnetic Resonance Insights, 4, 27–41.

    Article  Google Scholar 

  • Tazuma, S., & Kajiyama, G. (2001). Carcinogenesis of malignant lesions of the gall bladder. The impact of chronic inflammation and gallstones. Langenbecks Archives of Surgery, 386(3), 224–229.

    Article  CAS  Google Scholar 

  • Tessem, M.-B., Swanson, M. G., Keshari, K. R., Albers, M. J., Joun, D., Tabatabai, Z. L., et al. (2008). Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magnetic Resonance in Medicine, 60(3), 510–516.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Tso, V. K., Slupsky, C. M., & Fedorak, R. N. (2010). Metabolomics and detection of colorectal cancer in humans: A systematic review. Future Oncology, 6(9), 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res, 37(Database issue), D603–D610.

    Google Scholar 

  • Wright, A. J., Fellows, G. A., Griffiths, J. R., Wilson, M., Bell, B. A., & Howe, F. A. (2010). Ex vivo HRMAS of adult brain tumours: Metabolite quantification and assignment of tumour biomarkers. Molecular Cancer, 9, 66–83.

    Article  PubMed  Google Scholar 

  • Yalcin, S. (2004). Carcinoma of the gallbladder. Orphanet encyclopedia (pp. 1–5).

  • Yang, T., Zhang, B.-H., Zhang, J., Zhang, Y.-J., Jiang, X.-Q., & Wu, M.-C. (2007a). Surgical treatment of xanthogranulomatous cholecystitis: Experience in 33 cases. Hepatobiliary & Pancreatic Diseases International, 6(5), 504–508.

    Google Scholar 

  • Yang, Y., Li, C., Nie, X., Feng, X., Chen, W., Yue, Y., et al. (2007b). Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. Journal of Proteome Research, 6(7), 2605–2614.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance from the Department of Science and Technology, Government of India is gratefully acknowledged. S. K. Bharti thanks Dr. K. Jayalakshmi Mulge and Ms Kanchan Sonkar for their help during the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinay Kumar Kapoor or Raja Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharti, S.K., Behari, A., Kapoor, V.K. et al. Magic angle spinning NMR spectroscopic metabolic profiling of gall bladder tissues for differentiating malignant from benign disease. Metabolomics 9, 101–118 (2013). https://doi.org/10.1007/s11306-012-0431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0431-7

Keywords

Navigation