Skip to main content

Advertisement

Log in

Harnessing the power of proteomics in precision diabetes medicine

  • Review
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual’s disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DIA:

Data-independent acquisition

GRS:

Genetic risk scores

GWAS:

Genome-wide association studies

MR:

Mendelian randomisation

PDM:

Precision diabetes medicine

PMDI:

Precision Medicine in Diabetes Initiative

pQTL:

Protein quantitative trait loci

PTM:

Post-translational modification

QTLs:

Quantitative trait loci

RbG:

Recall by genotype

V2F:

Variant-to-function

References

  1. Diamanti K, Cavalli M, Pereira MJ et al (2022) Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 3(10):100763. https://doi.org/10.1016/j.xcrm.2022.100763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson JD (2021) On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64(10):2138–2146. https://doi.org/10.1007/s00125-021-05505-4

    Article  CAS  PubMed  Google Scholar 

  3. McCarthy MI (2017) Painting a new picture of personalised medicine for diabetes. Diabetologia 60(5):793–799. https://doi.org/10.1007/s00125-017-4210-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allesøe RL, Lundgaard AT, Hernández Medina R et al (2023) Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol 41(3):399–408. https://doi.org/10.1038/s41587-022-01520-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung WK, Erion K, Florez JC et al (2020) Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63(9):1671–1693. https://doi.org/10.1007/s00125-020-05181-w

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tobias DK, Merino J, Ahmad A et al (2023) Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nat Med 29(10):2438–2457. https://doi.org/10.1038/s41591-023-02502-5

    Article  CAS  PubMed  Google Scholar 

  7. O’Neil PM, Birkenfeld AL, McGowan B et al (2018) Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392(10148):637–649. https://doi.org/10.1016/S0140-6736(18)31773-2

    Article  CAS  PubMed  Google Scholar 

  8. Xia L, Shen T, Dong W et al (2021) Comparative efficacy and safety of 8 GLP-1RAs in patients with type 2 diabetes: a network meta-analysis. Diabetes Res Clin Pract 177:108904. https://doi.org/10.1016/j.diabres.2021.108904

    Article  CAS  PubMed  Google Scholar 

  9. Huthmacher JA, Meier JJ, Nauck MA (2020) Efficacy and safety of short- and long-acting glucagon-like peptide 1 receptor agonists on a background of basal insulin in type 2 diabetes: a meta-analysis. Diabetes Care 43(9):2303–2312. https://doi.org/10.2337/dc20-0498%JDiabetesCare

    Article  CAS  PubMed  Google Scholar 

  10. Bergman M, Buysschaert M, Ceriello A et al (2023) Current diagnostic criteria identify risk for type 2 diabetes too late. Lancet Diabetes Endocrinol 11(4):224–226. https://doi.org/10.1016/s2213-8587(23)00039-6

    Article  CAS  PubMed  Google Scholar 

  11. Udler MS, Kim J, von Grotthuss M et al (2018) Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med 15(9):e1002654. https://doi.org/10.1371/journal.pmed.1002654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahlqvist E, Storm P, Käräjämäki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6(5):361–369. https://doi.org/10.1016/s2213-8587(18)30051-2

    Article  PubMed  Google Scholar 

  13. Schrader S, Perfilyev A, Ahlqvist E et al (2022) Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diabetes Care 45(7):1621–1630. https://doi.org/10.2337/dc21-2489%JDiabetesCare

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Klerk JA, Beulens JWJ, Mei H et al (2023) Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 66(6):1057–1070. https://doi.org/10.1007/s00125-023-05886-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slieker RC, Donnelly LA, Fitipaldi H et al (2021) Distinct molecular signatures of clinical clusters in people with type 2 diabetes: an IMI-RHAPSODY study. Diabetes 70(11):2683–2693. https://doi.org/10.2337/db20-1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herder C, Maalmi H, Strassburger K et al (2021) Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes 70(5):1198–1208. https://doi.org/10.2337/db20-1054

    Article  CAS  PubMed  Google Scholar 

  17. Pigeyre M, Gerstein H, Ahlqvist E, Hess S, Paré G (2023) Identifying blood biomarkers for type 2 diabetes subtyping: a report from the ORIGIN trial. Diabetologia 66(6):1045–1051. https://doi.org/10.1007/s00125-023-05887-7

    Article  CAS  PubMed  Google Scholar 

  18. Zaghlool SB, Halama A, Stephan N et al (2022) Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat Commun 13(1):7121. https://doi.org/10.1038/s41467-022-34754-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang G, Chiou J, Zeng C et al (2023) Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes. 2022.2012.2031.522386. https://doi.org/10.1101/2022.12.31.522386%JbioRxiv

  20. Bader JM, Albrecht V, Mann M (2023) MS-based proteomics of body fluids: the end of the beginning. Mol Cell Proteom 22(7):100577. https://doi.org/10.1016/j.mcpro.2023.100577

    Article  CAS  Google Scholar 

  21. Yanovich G, Agmon H, Harel M, Sonnenblick A, Peretz T, Geiger T (2018) Clinical proteomics of breast cancer reveals a novel layer of breast cancer classification. Cancer Res 78(20):6001–6010. https://doi.org/10.1158/0008-5472.Can-18-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T (2016) Proteomic maps of breast cancer subtypes. Nat Commun 7:10259. https://doi.org/10.1038/ncomms10259

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slieker RC, Donnelly LA, Akalestou E et al (2023) Identification of biomarkers for glycaemic deterioration in type 2 diabetes. Nat Commun 14(1):2533. https://doi.org/10.1038/s41467-023-38148-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun BB, Chiou J, Traylor M et al (2023) Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622(7982):329–338. https://doi.org/10.1038/s41586-023-06592-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Chen L, Savage SR et al (2021) Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39(3):361-379.e316. https://doi.org/10.1016/j.ccell.2020.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satpathy S, Krug K, Jean Beltran PM et al (2021) A proteogenomic portrait of lung squamous cell carcinoma. Cell 184(16):4348-4371.e4340. https://doi.org/10.1016/j.cell.2021.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS (2023) Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 34:e14334. https://doi.org/10.1111/sms.14334

    Article  PubMed  Google Scholar 

  28. Athieniti E, Spyrou GM (2023) A guide to multi-omics data collection and integration for translational medicine. Comput Struct Biotechnol J 21:134–149. https://doi.org/10.1016/j.csbj.2022.11.050

    Article  CAS  PubMed  Google Scholar 

  29. MacCoss MJ, Alfaro JA, Faivre DA, Wu CC, Wanunu M, Slavov N (2023) Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat Methods 20(3):339–346. https://doi.org/10.1038/s41592-023-01802-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao J, Packer JS, Ramani V et al (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357(6352):661–667. https://doi.org/10.1126/science.aam8940

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Codreanu SG, Wen B et al (2018) Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol Cell Proteom 17(3):422–430. https://doi.org/10.1074/mcp.RA117.000155

    Article  CAS  Google Scholar 

  32. Giuliani A, Bui TT, Helmy M, Selvarajoo K (2022) Identifying toggle genes from transcriptome-wide scatter: a new perspective for biological regulation. Genomics 114(1):215–228. https://doi.org/10.1016/j.ygeno.2021.11.027

    Article  CAS  PubMed  Google Scholar 

  33. Beger RD, Dunn W, Schmidt MA et al (2016) Metabolomics enables precision medicine: “A White Paper, Community Perspective.” Metabolomics 12(10):149. https://doi.org/10.1007/s11306-016-1094-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Danzi F, Pacchiana R, Mafficini A et al (2023) To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 8(1):137. https://doi.org/10.1038/s41392-023-01380-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Holmes MV, Davey Smith G, Ala-Korpela M (2017) Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation. Diabetes Care 40(12):1779–1786. https://doi.org/10.2337/dc17-1642

    Article  CAS  PubMed  Google Scholar 

  36. Morze J, Wittenbecher C, Schwingshackl L et al (2022) Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45(4):1013–1024. https://doi.org/10.2337/dc21-1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corbin LJ, Hughes DA, Bull CJ et al (2023) The metabolomic signature of weight loss and remission in the Diabetes Remission Clinical Trial (DiRECT). Diabetologia 67(1):74–87. https://doi.org/10.1007/s00125-023-06019-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Falco B, Giannino F, Carteni F, Mazzoleni S, Kim D-H (2022) Metabolic flux analysis: a comprehensive review on sample preparation, analytical techniques, data analysis, computational modelling, and main application areas. RSC Adv 12(39):25528–25548. https://doi.org/10.1039/D2RA03326G

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108(1):163–172. https://doi.org/10.1016/j.bpj.2014.11.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM (2020) Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367(6479):eaaw3381. https://doi.org/10.1126/science.aaw3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brion C, Lutz SM, Albert FW (2020) Simultaneous quantification of mRNA and protein in single cells reveals post-transcriptional effects of genetic variation. eLife 9:e60645. https://doi.org/10.7554/eLife.60645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunner A-D, Thielert M, Vasilopoulou C et al (2022) Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol Syst Biol 18(3):e10798. https://doi.org/10.15252/msb.202110798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang D, Eraslan B, Wieland T et al (2019) A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol 15(2):e8503. https://doi.org/10.15252/msb.20188503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhamija S, Menon MB (2018) Non-coding transcript variants of protein-coding genes - what are they good for? RNA Biol 15(8):1025–1031. https://doi.org/10.1080/15476286.2018.1511675

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vakirlis N, Vance Z, Duggan KM, McLysaght A (2022) De novo birth of functional microproteins in the human lineage. Cell Rep 41(12):111808. https://doi.org/10.1016/j.celrep.2022.111808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu Y, Orre LM, Johansson HJ et al (2018) Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun 9(1):903. https://doi.org/10.1038/s41467-018-03311-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carrasco-Zanini J, Pietzner M, Lindbohm JV et al (2022) Proteomic signatures for identification of impaired glucose tolerance. Nat Med 28(11):2293–2300. https://doi.org/10.1038/s41591-022-02055-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geyer PE, WewerAlbrechtsen NJ, Tyanova S et al (2016) Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol 12(12):901. https://doi.org/10.15252/msb.20167357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Niu L, Thiele M, Geyer PE et al (2022) Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat Med 28(6):1277–1287. https://doi.org/10.1038/s41591-022-01850-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wewer Albrechtsen NJ, Geyer PE, Doll S et al (2018) Plasma proteome profiling reveals dynamics of inflammatory and lipid homeostasis markers after Roux-en-Y gastric bypass surgery. Cell Syst 7(6):601-612.e603. https://doi.org/10.1016/j.cels.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  51. Luo H, Bauer A, Nano J et al (2023) Associations of plasma proteomics with type 2 diabetes and related traits: results from the longitudinal KORA S4/F4/FF4 Study. Diabetologia 66(9):1655–1668. https://doi.org/10.1007/s00125-023-05943-2

    Article  CAS  PubMed  Google Scholar 

  52. Ignjatovic V, Geyer PE, Palaniappan KK et al (2019) Mass spectrometry-based plasma proteomics: considerations from sample collection to achieving translational data. J Proteome Res 18(12):4085–4097. https://doi.org/10.1021/acs.jproteome.9b00503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geyer PE, Voytik E, Treit PV et al (2019) Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med 11(11):e10427. https://doi.org/10.15252/emmm.201910427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteom : MCP 1(11):845–867. https://doi.org/10.1074/mcp.r200007-mcp200

    Article  CAS  PubMed  Google Scholar 

  55. Kim MS, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509(7502):575–581. https://doi.org/10.1038/nature13302

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang X, Coulombe-Huntington J, Kang S et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164(4):805–817. https://doi.org/10.1016/j.cell.2016.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li YI, van de Geijn B, Raj A et al (2016) RNA splicing is a primary link between genetic variation and disease. Science 352(6285):600–604. https://doi.org/10.1126/science.aad9417

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith LM, Kelleher NL (2018) Proteoforms as the next proteomics currency. Science 359(6380):1106–1107. https://doi.org/10.1126/science.aat1884

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hellinger R, Sigurdsson A, Wu W et al (2023) Peptidomics. Nat Rev Methods Primers 3(1):25. https://doi.org/10.1038/s43586-023-00205-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prensner JR, Abelin JG, Kok LW et al (2023) What can ribo-seq, immunopeptidomics, and proteomics tell us about the noncanonical proteome? Mol Cell Proteom 22(9):100631. https://doi.org/10.1016/j.mcpro.2023.100631

    Article  CAS  Google Scholar 

  61. Huang L, Shao D, Wang Y et al (2021) Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinformatics 22(1):315–333. https://doi.org/10.1093/bib/bbz160

    Article  CAS  PubMed  Google Scholar 

  62. Geyer Philipp E, Kulak Nils A, Pichler G, Holdt Lesca M, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2(3):185–195. https://doi.org/10.1016/j.cels.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  63. Bache N, Geyer PE, Bekker-Jensen DB et al (2018) A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol Cell Proteom 17(11):2284–2296. https://doi.org/10.1074/mcp.TIR118.000853

    Article  CAS  Google Scholar 

  64. Messner CB, Demichev V, Bloomfield N et al (2021) Ultra-fast proteomics with Scanning SWATH. Nat Biotechnol 39(7):846–854. https://doi.org/10.1038/s41587-021-00860-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bekker-Jensen DB, Martínez-Val A, Steigerwald S et al (2020) A compact quadrupole-orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients. Mol Cell Proteom 19(4):716–729. https://doi.org/10.1074/mcp.TIR119.001906

    Article  CAS  Google Scholar 

  66. Meier F, Brunner AD, Koch S et al (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteom : MCP 17(12):2534–2545. https://doi.org/10.1074/mcp.TIR118.000900

    Article  CAS  PubMed  Google Scholar 

  67. Heil LR, Damoc E, Arrey TN et al (2023) Evaluating the performance of the Astral mass analyzer for quantitative proteomics using data-independent acquisition. J Proteome Res 22(10):3290–3300. https://doi.org/10.1021/acs.jproteome.3c00357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Doerr A (2015) DIA mass spectrometry. Nat Methods 12(1):35–35. https://doi.org/10.1038/nmeth.3234

    Article  CAS  Google Scholar 

  69. Wang Z, Qu B, Zhang W et al (2023) High-throughput and in-depth analysis of plasma proteome by UV-assisted protein digestion, 5-plex labeling and MS-based high abundance protein removal method. BioRxiv (Preprint). 20 October 2023. Available from: https://doi.org/10.1101/2023.10.20.563193

  70. Demichev V, Szyrwiel L, Yu F et al (2022) dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun 13(1):3944. https://doi.org/10.1038/s41467-022-31492-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M (2020) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17(1):41–44. https://doi.org/10.1038/s41592-019-0638-x

    Article  CAS  PubMed  Google Scholar 

  72. Lou R, Cao Y, Li S et al (2023) Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat Commun 14(1):94. https://doi.org/10.1038/s41467-022-35740-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M (2018) BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods 15(6):440–448. https://doi.org/10.1038/s41592-018-0003-5

    Article  CAS  PubMed  Google Scholar 

  74. Messner CB, Demichev V, Wendisch D et al (2020) Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst 11(1):11-24.e14. https://doi.org/10.1016/j.cels.2020.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muraoka S, Hirano M, Isoyama J, Ishida M, Tomonaga T, Adachi J (2022) Automated proteomics sample preparation of phosphatidylserine-positive extracellular vesicles from human body fluids. ACS Omega 7(45):41472–41479. https://doi.org/10.1021/acsomega.2c05244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gold L, Ayers D, Bertino J et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PloS one 5(12):e15004. https://doi.org/10.1371/journal.pone.0015004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. https://doi.org/10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  78. Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S (2011) Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucl Acids Res 39(15):e102. https://doi.org/10.1093/nar/gkr424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dunbar SA, Hoffmeyer MR (2013) Chapter 2.9: Microsphere-based multiplex immunoassays: development and applications using Luminex® xMAP® technology. In: Wild D (ed.) The immunoassay handbook, 4th edn. Elsevier, Oxford, pp 157–174

  80. Pietzner M, Wheeler E, Carrasco-Zanini J et al (2021) Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat Commun 12(1):6822. https://doi.org/10.1038/s41467-021-27164-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gramolini A, Lau E, Liu PP (2016) Identifying low-abundance biomarkers: aptamer-based proteomics potentially enables more sensitive detection in cardiovascular diseases. Circulation 134(4):286–289. https://doi.org/10.1161/circulationaha.116.022940

    Article  PubMed  Google Scholar 

  82. Sun BB, Maranville JC, Peters JE et al (2018) Genomic atlas of the human plasma proteome. Nature 558(7708):73–79. https://doi.org/10.1038/s41586-018-0175-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rohloff JC, Gelinas AD, Jarvis TC et al (2014) Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol Ther Nucl Acids 3(10):e201. https://doi.org/10.1038/mtna.2014.49

    Article  CAS  Google Scholar 

  84. Raffield LM, Dang H, Pratte KA et al (2020) Comparison of proteomic assessment methods in multiple cohort studies. Proteomics 20(12):1900278. https://doi.org/10.1002/pmic.201900278

    Article  CAS  Google Scholar 

  85. Katz DH, Robbins JM, Deng S et al (2022) Proteomic profiling platforms head to head: leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci Adv 8(33):eabm5164. https://doi.org/10.1126/sciadv.abm5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eldjarn GH, Ferkingstad E, Lund SH et al (2023) Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622(7982):348–358. https://doi.org/10.1038/s41586-023-06563-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blume JE, Manning WC, Troiano G et al (2020) Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 11(1):3662. https://doi.org/10.1038/s41467-020-17033-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmad J, Zubair M, Malik A, Siddiqui MA, Wangnoo SK (2012) Cathepsin-D, adiponectin, TNF-α, IL-6 and hsCRP plasma levels in subjects with diabetic foot and possible correlation with clinical variables: a multicentric study. Foot 22(3):194–199. https://doi.org/10.1016/j.foot.2012.03.015

    Article  PubMed  Google Scholar 

  89. Zou X, Zhou X, Zhu Z, Ji L (2019) Novel subgroups of patients with adult-onset diabetes in Chinese and US populations. Lancet Diabetes Endocrinol 7(1):9–11. https://doi.org/10.1016/s2213-8587(18)30316-4

    Article  PubMed  Google Scholar 

  90. Li X, Yang S, Cao C et al (2020) Validation of the Swedish diabetes re-grouping scheme in adult-onset diabetes in China. J Clin Endocrinol Metab 105(10):e3519–e3528. https://doi.org/10.1210/clinem/dgaa524%JTheJournalofClinicalEndocrinology&Metabolism

    Article  Google Scholar 

  91. Pigeyre M, Hess S, Gomez MF et al (2022) Validation of the classification for type 2 diabetes into five subgroups: a report from the ORIGIN trial. Diabetologia 65(1):206–215. https://doi.org/10.1007/s00125-021-05567-4

    Article  PubMed  Google Scholar 

  92. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT (2019) Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol 7(6):442–451. https://doi.org/10.1016/s2213-8587(19)30087-7

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zaharia OP, Strassburger K, Strom A et al (2019) Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 7(9):684–694. https://doi.org/10.1016/s2213-8587(19)30187-1

    Article  PubMed  Google Scholar 

  94. Tanabe H, Saito H, Kudo A et al (2020) Factors associated with risk of diabetic complications in novel cluster-based diabetes subgroups: a Japanese retrospective cohort study. J Clin Med 9(7):2083. https://doi.org/10.3390/jcm9072083

    Article  PubMed  PubMed Central  Google Scholar 

  95. Anjana RM, Baskar V, Nair ATN et al (2020) Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study. BMJ Open Diabetes Res Care 8(1):e001506. https://doi.org/10.1136/bmjdrc-2020-001506

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bello-Chavolla OY, Bahena-López JP, Vargas-Vázquez A et al (2020) Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach. BMJ Open Diabetes Res Care 8(1):e001550. https://doi.org/10.1136/bmjdrc-2020-001550

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gudmundsdottir V, Zaghlool SB, Emilsson V et al (2020) Circulating protein signatures and causal candidates for type 2 diabetes. Diabetes 69(8):1843–1853. https://doi.org/10.2337/db19-1070%JDiabetes

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei Y, Richardson TG, Zhan Y, Carlsson S (2023) Childhood adiposity and novel subtypes of adult-onset diabetes: a Mendelian randomisation and genome-wide genetic correlation study. Diabetologia 66(6):1052–1056. https://doi.org/10.1007/s00125-023-05883-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Udler MS, McCarthy MI, Florez JC, Mahajan A (2019) Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev 40(6):1500–1520. https://doi.org/10.1210/er.2019-00088%JEndocrineReviews

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen F, Chandrashekar DS, Varambally S, Creighton CJ (2019) Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun 10(1):5679. https://doi.org/10.1038/s41467-019-13528-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carrasco-Zanini J, Pietzner M, Davitte J et al (2023) Proteomic prediction of common and rare diseases. MedRxiv (Preprint). 23 July 2023. Available from: https://doi.org/10.1101/2023.07.18.23292811

  103. Gadd DA, Hillary RF, Kuncheva Z et al (2023) Blood protein levels predict leading incident diseases and mortality in UK Biobank. MedRxiv (Preprint).4 August 2023. Available from: https://doi.org/10.1101/2023.05.01.23288879

  104. Peat G, Riley RD, Croft P et al (2014) Improving the transparency of prognosis research: the role of reporting, data sharing, registration, and protocols. PLoS Med 11(7):e1001671. https://doi.org/10.1371/journal.pmed.1001671

    Article  PubMed  PubMed Central  Google Scholar 

  105. Narayan KMV, Kanaya AM (2020) Why are South Asians prone to type 2 diabetes? A hypothesis based on underexplored pathways. Diabetologia 63(6):1103–1109. https://doi.org/10.1007/s00125-020-05132-5

    Article  PubMed  PubMed Central  Google Scholar 

  106. Coral DE, Fernandez-Tajes J, Tsereteli N et al (2023) A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes. Nat Metab 5(2):237–247. https://doi.org/10.1038/s42255-022-00731-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Y, Kanai M, Tan T et al (2023) Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell Genom 3(10):100408. https://doi.org/10.1016/j.xgen.2023.100408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yuan S, Merino J, Larsson SC (2023) Causal factors underlying diabetes risk informed by Mendelian randomisation analysis: evidence, opportunities and challenges. Diabetologia 66(5):800–812. https://doi.org/10.1007/s00125-023-05879-7

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tuomi T, Nagorny CLF, Singh P et al (2016) Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab 23(6):1067–1077. https://doi.org/10.1016/j.cmet.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  110. van Walree ES, Jansen IE, Bell NY et al (2022) Disentangling genetic risks for metabolic syndrome. Diabetes 71(11):2447–2457. https://doi.org/10.2337/db22-0478%JDiabetes

    Article  PubMed  Google Scholar 

  111. Aguet F, Alasoo K, Li YI et al (2023) Molecular quantitative trait loci. Nat Rev Methods Primers 3(1):4. https://doi.org/10.1038/s43586-022-00188-6

    Article  CAS  Google Scholar 

  112. Suhre K, Venkataraman GR, Guturu H et al (2023) Nanoparticle enrichment mass-spectrometry proteomics identifies protein altering variants for precise pQTL mapping. BioRxiv (Preprint). 21 April 2023. Available from: https://doi.org/10.1101/2023.04.20.537640

  113. Ferkingstad E, Sulem P, Atlason BA et al (2021) Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53(12):1712–1721. https://doi.org/10.1038/s41588-021-00978-w

    Article  CAS  PubMed  Google Scholar 

  114. Folkersen L, Gustafsson S, Wang Q et al (2020) Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab 2(10):1135–1148. https://doi.org/10.1038/s42255-020-00287-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pietzner M, Wheeler E, Carrasco-Zanini J et al (2021) Mapping the proteo-genomic convergence of human diseases. Science 374(6569):eabj1541. https://doi.org/10.1126/science.abj1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suhre K, Arnold M, Bhagwat AM et al (2017) Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 8(1):14357. https://doi.org/10.1038/ncomms14357

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gudjonsson A, Gudmundsdottir V, Axelsson GT et al (2022) A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun 13(1):480. https://doi.org/10.1038/s41467-021-27850-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu F, Yu EY, Cai X et al (2023) Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility. Nat Commun 14(1):896. https://doi.org/10.1038/s41467-023-36491-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suhre K (2023) Genetic associations with ratios between protein levels detect new pQTLs and reveal protein-protein interactions. BioRxiv (Preprint). 20 July 2023. Available from: https://doi.org/10.1101/2023.07.19.549734

  120. Dhindsa RS, Burren OS, Sun BB et al (2023) Rare variant associations with plasma protein levels in the UK Biobank. Nature 622(7982):339–347. https://doi.org/10.1038/s41586-023-06547-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niu L, Stinson SE, Holm LA et al (2023) Plasma proteome variation and its genetic determinants in children and adolescents. MedRxiv (Preprint). 31 March 2023. Available from https://doi.org/10.1101/2023.03.31.23287853

  122. Suzuki K, Akiyama M, Ishigaki K et al (2019) Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 51(3):379–386. https://doi.org/10.1038/s41588-018-0332-4

    Article  CAS  PubMed  Google Scholar 

  123. Ekoru K, Young EH, Adebamowo C et al (2016) H3Africa multi-centre study of the prevalence and environmental and genetic determinants of type 2 diabetes in sub-Saharan Africa: study protocol. Glob Health Epidemiol Genom 1:e5. https://doi.org/10.1017/gheg.2015.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cho NH, Shaw JE, Karuranga S et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  125. Corbin LJ, Tan VY, Hughes DA et al (2018) Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat Commun 9(1):711. https://doi.org/10.1038/s41467-018-03109-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ghanbari F, Yazdanpanah N, Yazdanpanah M, Richards JB, Manousaki D (2022) Connecting genomics and proteomics to identify protein biomarkers for adult and youth-onset type 2 diabetes: a two-sample Mendelian randomization study. Diabetes 71(6):1324–1337. https://doi.org/10.2337/db21-1046%JDiabetes

    Article  CAS  PubMed  Google Scholar 

  127. Mitchell RE, Hartley AE, Walker VM et al (2023) Strategies to investigate and mitigate collider bias in genetic and Mendelian randomisation studies of disease progression. PLoS Genet 19(2):e1010596. https://doi.org/10.1371/journal.pgen.1010596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yuan S, Xu F, Li X et al (2023) Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses. Cell Rep Med 4(9):101174. https://doi.org/10.1016/j.xcrm.2023.101174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Emilsson V, Ilkov M, Lamb JR et al (2018) Co-regulatory networks of human serum proteins link genetics to disease. Science 361(6404):769–773. https://doi.org/10.1126/science.aaq1327

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yao C, Chen G, Song C et al (2018) Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 9(1):3268. https://doi.org/10.1038/s41467-018-05512-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

    Article  MathSciNet  PubMed  Google Scholar 

  132. Johnson D, Wilke MAP, Lyle SM et al (2022) A systematic review and analysis of the use of polygenic scores in pharmacogenomics. Clin Pharmacol Ther 111(4):919–930. https://doi.org/10.1002/cpt.2520

    Article  PubMed  Google Scholar 

  133. Chitrangi S, Vaity P, Jamdar A, Bhatt S (2023) Patient-derived organoids for precision oncology: a platform to facilitate clinical decision making. BMC Cancer 23(1):689. https://doi.org/10.1186/s12885-023-11078-9

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mirauta BA, Seaton DD, Bensaddek D et al (2020) Population-scale proteome variation in human induced pluripotent stem cells. eLife 9:e57390. https://doi.org/10.7554/eLife.57390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019. https://doi.org/10.1038/nrdp.2015.19

    Article  PubMed  Google Scholar 

  136. Kim SJ, Chae S, Kim H et al (2014) A protein profile of visceral adipose tissues linked to early pathogenesis of type 2 diabetes mellitus. Mol Cell Proteom 13(3):811–822. https://doi.org/10.1074/mcp.M113.035501

    Article  CAS  Google Scholar 

  137. Öhman T, Teppo J, Datta N, Mäkinen S, Varjosalo M, Koistinen HA (2021) Skeletal muscle proteomes reveal downregulation of mitochondrial proteins in transition from prediabetes into type 2 diabetes. iScience 24(7):102712. https://doi.org/10.1016/j.isci.2021.102712

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sacco F, Seelig A, Humphrey SJ et al (2019) Phosphoproteomics reveals the GSK3-PDX1 axis as a key pathogenic signaling node in diabetic islets. Cell Metab 29(6):1422-1432.e1423. https://doi.org/10.1016/j.cmet.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  139. Fazakerley DJ, van Gerwen J, Cooke KC et al (2023) Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat Commun 14(1):923. https://doi.org/10.1038/s41467-023-36549-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dittmann A, Kennedy NJ, Soltero NL et al (2019) High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 15(8):e8849. https://doi.org/10.15252/msb.20198849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang T, Keele GR, Gyuricza IG et al (2022) Multi-omics analysis identifies drivers of protein phosphorylation. BioRxiv (Preprint). 8 December 2022. Available from: https://doi.org/10.1101/2022.06.03.494740

  142. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995. https://doi.org/10.1038/nbt.3327

    Article  CAS  PubMed  Google Scholar 

  143. Nelson ME, Madsen S, Cooke KC et al (2022) Systems-level analysis of insulin action in mouse strains provides insight into tissue- and pathway-specific interactions that drive insulin resistance. Cell Metab 34(2):227-239.e226. https://doi.org/10.1016/j.cmet.2021.12.013

    Article  CAS  PubMed  Google Scholar 

  144. Parker BL, Calkin AC, Seldin MM et al (2019) An integrative systems genetic analysis of mammalian lipid metabolism. Nature 567(7747):187–193. https://doi.org/10.1038/s41586-019-0984-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Venkatachalapathy P, Padhilahouse S, Sellappan M et al (2021) Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: potential implications for clinical practice. Pharmacogenomics Pers Med 14:1441–1455. https://doi.org/10.2147/pgpm.S329787

    Article  CAS  Google Scholar 

  146. García-Pérez R, Ramirez JM, Ripoll-Cladellas A et al (2023) The landscape of expression and alternative splicing variation across human traits. Cell Genom 3(1):100244. https://doi.org/10.1016/j.xgen.2022.100244

    Article  CAS  PubMed  Google Scholar 

  147. Wang Z, Cryar A, Lemke O et al (2022) A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: an observational multi-cohort study. eClinicalMedicine 49:101495. https://doi.org/10.1016/j.eclinm.2022.101495

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul S. Deshmukh.

Ethics declarations

Acknowledgements

The authors would like to thank J. Merino and R. A. J. Smit from Novo Nordisk Foundation Center for Basic Metabolic Research for providing critical feedback on the manuscript.

Funding

Work at The Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR) is funded in part by a generous donation from the Novo Nordisk Foundation (grant no. NNF14CC0001). ASD is supported by European Foundation for the Study of Diabetes (EFSD) (grant no. NNF19SA058976). NK acknowledges support by the Natural Sciences and Engineering Research Council of Canada (NSERC) (reference no. PDF-578308-2023).

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

NK and JKL prepared the initial draft, and all authors were responsible for reviewing it critically for important intellectual content. All authors approved the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 202 KB)

Supplementary file2 (PPTX 908 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgan, N., Kjærgaard Larsen, J. & Deshmukh, A.S. Harnessing the power of proteomics in precision diabetes medicine. Diabetologia 67, 783–797 (2024). https://doi.org/10.1007/s00125-024-06097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-024-06097-5

Keywords

Navigation