Skip to main content

Advertisement

Log in

Changes in intracellular metabolism underlying the adaptation of Saccharomyces cerevisiae strains to ethanol stress

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is often stressed by the ethanol which accumulates during the production of bioethanol by the fermentation process. The study of ethanol-adapted S. cerevisiae strains provide an opportunity to clarify the molecular mechanism underlying the adaptation or tolerance of S. cerevisiae to ethanol stress. The aim of this study was to clarify this molecular mechanism by investigating the ethanol adaptation-associated intracellular metabolic changes in S. cerevisiae using a gas chromatography–mass spectrometry-based metabolomics strategy. A partial least-squares-discriminant analysis between the parental strain and ethanol-adapted strains identified 12 differential metabolites of variable importance with a projection value of >1. The ethanol-adapted strains had a more activated glycolysis pathway and higher energy production than the parental strain, suggesting the possibility that an increased energy production and energy requirement might be partly responsible for an increased ethanol tolerance. An increased glycine content also partly contributed to the higher ethanol tolerance of the ethanol-adapted strains. The decreased oleic acid content may be a self-protection mechanism of ethanol-adapted strains to maintain membrane integrity through decreasing membrane fluidity. We suggest that while being exposed to ethanol stress, ethanol-adapted S. cerevisiae cells may remodel their metabolic phenotype and the composition of their cell membrane to adapt to ethanol stress and acquire higher ethanol tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  PubMed  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  PubMed  Google Scholar 

  • Castro CC, Gunning C, Oliveira CM, Couto JA, Teixeira JA, Martins RC, Ferreira AC (2012) Saccharomyces cerevisiae oxidative response evaluation by cyclic voltammetry and gas chromatography–mass spectrometry. J Agric Food Chem 60:7252–7261

    Article  CAS  PubMed  Google Scholar 

  • Cui FX, Zhang RM, Liu HQ, Wang YF, Li H (2015) Metabolic responses to Lactobacillus plantarum contamination or bacteriophage treatment in Saccharomyces cerevisiae using a GC-MS-based metabolomics approach. World J Microbiol Biotechnol 31:2003–2013

    Article  CAS  PubMed  Google Scholar 

  • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquié-Moreno MR, Thevelein JM (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6:213–223

    Google Scholar 

  • Ding JM, Huang XW, Zhang LM, Zhao N, Yang DM, Zhang KQ (2009a) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ding MZ, Tian HC, Cheng JS, Yuan YJ (2009b) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144:279–286

    Article  CAS  PubMed  Google Scholar 

  • Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 3:e2623

    Article  PubMed  PubMed Central  Google Scholar 

  • Favaro L, Basaglia M, Trento A, Van Rensburg E, García-Aparicio M, Van Zyl WH, Casella S (2013) Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnol Biofuels 6:746–753

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Hasanuzzaman M, Rahim NA, Nahar A, Hosenuzzaman M (2014) Global renewable energy-based electricity generation and smart grid system for energy security. Sci World J 2014:197136

    CAS  Google Scholar 

  • Kajiwara S, Suga K, Sone H, Nakamura K (2000) Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering. Biotechnol Lett 22:1839–1843

    Article  CAS  Google Scholar 

  • Kanshin E, Kubiniok P, Thattikota Y, D’Amours D, Thibault P (2015) Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Mol Syst Biol 11:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim NR, Choi W (2011) Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Biotechnol Lett 33:509–515

    Article  CAS  PubMed  Google Scholar 

  • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ma ML, Luo S, Zhang RM, Han P, Hu W (2012) Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int J Biochem Cell Biol 44:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845

    Article  CAS  PubMed  Google Scholar 

  • Martín C, Thomsen MH, Hauggaard-Nielsen H, Belindathomesn A (2008) Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresour Technol 99:8777–8782

    Article  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliardini J, Hubmann G, Alfenore S, Nevoigt E, Bideaux C, Guillouet SE (2013) The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb Cell Fact 12:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  CAS  PubMed  Google Scholar 

  • Semkiv MV, Dmytruk KV, Abbas CA, Sibirny AA (2014) Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase. BMC Biotechnol 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108

    Article  CAS  PubMed  Google Scholar 

  • Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto SS, Reinke SN, Sykes BD, Lemire BD (2010) Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through 1H NMR-based metabolic footprinting. J Proteome Res 9:6729–6739

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS ONE 7:e31235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toya Y, Shimizu H (2013) Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 31:818–826

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas S, Højer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H (2015) Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. J Basic Microbiol 55:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Shi X, Koo I, Kim S, Schmidt RH, Arteel GE, Watson WH, McClain C, Zhang X (2013) MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Bioinformatics 29:1786–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westman JO, Mapelli V, Taherzadeh MJ, Franzén CJ (2014) Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl Environ Microbiol 80:6908–6918

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams KM, Liu P, Fay JC (2015) Evolution of ecological dominance of yeast species in high-sugar environments. Evolution 69:2079–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimalasena TT, Greetham D, Marvin ME, Liti G, Chandelia Y, Hart A, Louis EJ, Phister TG, Tucker GA, Smart KA (2014) Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb Cell Factories 13:1–13

    Article  Google Scholar 

  • Winder CL, Dunn WB, Goodacre R (2011) TARDIS-based microbial metabolomics: time and relative differences in systems. Trends Microbiol 19:315–322

    Article  CAS  PubMed  Google Scholar 

  • Xue YM, Jiang N (2006) Study on ethanol tolerance of Saccharomyces cerevisiae X330 under very high gravity medium. Sheng Wu Gong Cheng Xue Bao 22:508–513

    PubMed  Google Scholar 

  • Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776–1787

    Article  CAS  PubMed  Google Scholar 

  • You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14010301), the Fundamental Research Funds for the Central Universities (No. YS1407) and the Higher Education and High-quality and World-class Universities (No. PY201617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Zhang, S. & Li, H. Changes in intracellular metabolism underlying the adaptation of Saccharomyces cerevisiae strains to ethanol stress. Ann Microbiol 67, 195–202 (2017). https://doi.org/10.1007/s13213-016-1251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1251-1

Keywords

Navigation