Skip to main content

Advertisement

Log in

1H-NMR and mass spectrometric characterization of the metabolic response of juvenile Atlantic salmon (Salmo salar) to long-term handling stress

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Stressors of various kinds constantly affect fish both in the wild and in culture, examples being acute water temperature and quality changes, predation, handling, and confinement. Known physiological responses of fish to stress such as increases in plasma cortisol and glucose levels, are considered to be adaptive, allowing the animal to cope in the short term. Prolonged exposure to stressors however, has the potential to affect growth, immune function, and survival. Nonetheless, little is known about the mechanisms underlying the long-term stress response. We have investigated the metabolic response of juvenile Atlantic salmon (Salmo salar) to long-term handling stress by analyzing fish plasma via 1H nuclear magnetic resonance spectroscopy and ultra high performance liquid chromatography–mass spectrometry (UPLC–MS), and comparing results with controls. Analysis of NMR data indicated a difference in the metabolic profiles of control and stressed fish after 1 week of stress with a maximum difference observed after 2 weeks. These differences were associated with stress-induced increases in phosphatidyl choline, lactate, carbohydrates, alanine, valine and trimethylamine-N-oxide, and decreases in low density lipoprotein, very low density lipoprotein, and lipid. UPLC-MS data showed differences at week 2, associated with another set of compounds, tentatively identified on the basis of their mass/charge. Overall the results provided a multi-faceted view of the response of fish to long-term handling stress, indicating that the metabolic disparity between the control and stress groups increased to week 2, but declined by weeks 3 and 4, and revealed several new molecular indicators of long-term stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aardema, M. J., & MacGregor, J. T. (2002). Toxicology and genetic toxicology in the new era of “toxicogenomics”: Impact of “-omics” technologies. Mutation Research, 499, 13–25. doi:10.1016/S0027-5107(01)00292-5.

    PubMed  CAS  Google Scholar 

  • Azmi, J., Connelly, J., Holmes, E., Nicholson, J. K., Shore, R. F., & Griffin, J. L. (2005). Characterization of the biochemical effects of 1-nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition. Biomarkers, 10, 401–416. doi:10.1080/13547500500309259.

    Article  PubMed  CAS  Google Scholar 

  • Barton, B. A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42, 517–525. doi:10.1093/icb/42.3.517.

    Article  CAS  Google Scholar 

  • Barton, B. A., & Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 10, 3–26. doi:10.1016/0959-8030(91)90019-G.

    Article  Google Scholar 

  • Barton, B. A., Schreck, C. B., & Barton, L. D. (1987). Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Diseases of Aquatic Organisms, 2, 173–185. doi:10.3354/dao002173.

    Article  CAS  Google Scholar 

  • Beebe, R. K., Pell, J. R., & Seasholtz, M. B. (1989). Chemometrics: A practical guide. New York: Wiley.

    Google Scholar 

  • Bonga, S. E. W. (1997). The stress response in fish. Physiological Reviews, 77, 591–625.

    Google Scholar 

  • Brown, P. O., & Botstein, D. (1999). Exploring the new world of genome with DNA microarrays. Nature Genetics, 21, 33–37. doi:10.1038/4462.

    Article  PubMed  CAS  Google Scholar 

  • Burton, I. W., Quilliam, M. A., & Walter, J. A. (2005). Quantitative 1H NMR with external standards: Use in preparation of calibration solutions for algal toxins and other natural products. Analytical Chemistry, 77, 3123–3131. doi:10.1021/ac048385h.

    Article  PubMed  CAS  Google Scholar 

  • Coen, M., Ruepp, S. U., Lindon, J. C., Nicholson, J. K., Pognan, F., Lenz, E. M., et al. (2004). Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. Journal of Pharmaceutical and Biomedical Analysis, 35, 93–105. doi:10.1016/j.jpba.2003.12.019.

    Article  PubMed  CAS  Google Scholar 

  • Dacanay, A., Knickle, L., Solanky, K. S., Boyd, J. M., Walter, J. A., Brown, L. L., et al. (2006). Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida. Microbiology, 152, 1847–1856. doi:10.1099/mic.0.28768-0.

    Article  PubMed  CAS  Google Scholar 

  • Defernez, M., Gunning, Y. M., Parr, A. J., Shepherd, L. V. T., Davies, H. V., & Colquhoun, I. J. (2004). NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolomic pathways. Journal of Agricultural and Food Chemistry, 52, 6075–6085. doi:10.1021/jf049522e.

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu, G., Kreizman, T., & Degani, H. (2007). Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. International Journal of Cancer, 120, 1721–1730. doi:10.1002/ijc.22293.

    Article  CAS  Google Scholar 

  • Fast, M. D., Hosoya, S., Johnson, S. C., & Afonso, L. O. B. (2008). Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish & Shellfish Immunology, 24, 194–204. doi:10.1016/j.fsi.2007.10.009.

    Article  CAS  Google Scholar 

  • Griffin, J. L., & Kauppinen, R. A. (2007). Tumour metabolomics in animal models of human cancer. Journal of Proteome Research, 6, 498–505. doi:10.1021/pr060464h.

    Article  PubMed  CAS  Google Scholar 

  • Hershock, D., & Vogel, W. H. (1989). The effects of immobilization stress on serum triglycerides, NEFAs, and total cholesterol in male rats after dietary modifications. Life Sciences, 45, 157–165. doi:10.1016/0024-3205(89)90290-7.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, S., Johnson, S. C., Iwama, G. K., Gamperl, A. K., & Afonso, L. O. B. (2007). Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comparative Biochemistry and Physiology, 146, 78–86. doi:10.1016/j.cbpa.2006.09.003.

    Article  PubMed  CAS  Google Scholar 

  • Iwama, G. K., Afonso, L. O. B., & Vijayan, M. M. (2005). Stress in fish. In D. H. Evans & J. B. Claiborne (Eds.), The physiology of fishes (3rd ed., pp. 319–342). Florida: CRC Press.

    Google Scholar 

  • Lee, S. H., Woo, H. M., Jung, B. H., Lee, J., Kwon, O. S., Pyo, H. S., et al. (2007). Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine. Analytical Chemistry, 79, 6102–6110. doi:10.1021/ac070237e.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, E. M., Bright, J., Knight, R., Wilson, I. D., & Major, H. (2004). A metabonomic investigation of the biochemical effects of mercuric chloride in the rat urine using 1H NMR and HPLC-TOF/MS: Time dependant changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst (London), 129, 535–541. doi:10.1039/b400159c.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, Z., Rosenzweig, J., Wang, Y. Y., & Chan, D. W. (2002). Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, 48, 1296–1304.

    PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G., & Nicholson, J. K. (2004). Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 9, 1–31. doi:10.1080/13547500410001668379.

    Article  PubMed  CAS  Google Scholar 

  • Macho, S., Sales, F., Callao, M. P., Larrechi, M. S., & Rius, F. X. (2001). Outlier detection in the ethylene content determination in propylene copolymer by near-infrared spectroscopy and multivariate calibration. Applied Spectroscopy, 55, 1532–1536. doi:10.1366/0003702011953766.

    Article  CAS  Google Scholar 

  • Malmendal, A., Overgaard, J., Bundy, J. G., Sorensen, J. G., Nielsen, N. C., Loeschcke, V., et al. (2006). Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, R205–R212. doi:10.1152/ajpregu.00867.2005.

    PubMed  CAS  Google Scholar 

  • Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnology Letters, 29, 1–16. doi:10.1007/s10529-006-9218-0.

    Article  PubMed  CAS  Google Scholar 

  • Mommsen, T. P., Vijayan, M. M., & Moon, T. W. (1999). Cortisol in teleost: Dynamics, mechanism of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 9, 211–268. doi:10.1023/A:1008924418720.

    Article  Google Scholar 

  • Nicholson, J. K., & Foxall, P. J. D. (1995). 750 MHz 1H and 1H–13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67, 798–811. doi:10.1021/ac00101a004.

    Article  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189. doi:10.1080/004982599238047.

    Article  PubMed  CAS  Google Scholar 

  • Perou, C. M., Sørlie, T., Eisen, M. B., van den Rijn, M., Jeffery, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumors. Nature, 406, 747–752. doi:10.1038/35021093.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, A. D., & Pottinger, T. G. (1987). Crowding causes prolonged leucopenia in salmonid fish, despite interrenal acclimation. Journal of Fish Biology, 30, 701–712. doi:10.1111/j.1095-8649.1987.tb05799.x.

    Article  Google Scholar 

  • Pickering, A. D., & Pottinger, T. G. (1989). Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish Physiology and Biochemistry, 7, 253–258. doi:10.1007/BF00004714.

    Article  CAS  Google Scholar 

  • Ramoni, C., Spadaro, F., Menegon, M., & Podo, F. (2001). Cellular localization and functional role of phosphatidylcholine-specific phospholipase C in NK Cells. Journal of Immunology (Baltimore, MD.: 1950), 167, 2642–2650.

    CAS  Google Scholar 

  • Samerotte, A. L., Drazen, J. C., Brand, G. L., Seibel, B. A., & Yancey, P. H. (2007). Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: An analysis of causation. Physiological and Biochemical Zoology, 80, 197–208. doi:10.1086/510566.

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson, L. M., Förlin, L., Karlsson, G., Adolfsson-Erici, M., & Larsson, D. G. J. (2006). Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquatic Toxicology (Amsterdam, Netherlands), 78, 341–349. doi:10.1016/j.aquatox.2006.04.008.

    CAS  Google Scholar 

  • Seah, M. P., & Brown, M. T. (1998). Validation and accuracy of software for peak synthesis in XPS. Journal of Electron Spectroscopy and Related Phenomena, 95, 71–93. doi:10.1016/S0368-2048(98)00204-7.

    Article  CAS  Google Scholar 

  • Seibel, B. A., & Walsh, P. J. (2002). Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. The Journal of Experimental Biology, 205, 297–306.

    PubMed  CAS  Google Scholar 

  • Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolomic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74, 2233–2239. doi:10.1021/ac020064n.

    Article  PubMed  CAS  Google Scholar 

  • Solanky, K. S., Burton, I. W., MacKinnon, S. L., Walter, J. A., & Dacanay, A. (2005). Metabolic changes in Atlantic salmon exposed to Aeromonas salmonicida detected by 1H-nuclear magnetic resonance spectroscopy of plasma. Diseases of Aquatic Organisms, 65, 107–114. doi:10.3354/dao065107.

    Article  PubMed  CAS  Google Scholar 

  • Ståhle, L., & Wold, S. (1987). Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study. Journal of Chemometrics, 1, 185–196. doi:10.1002/cem.1180010306.

    Article  Google Scholar 

  • Stentiford, G. D., Viant, M. R., Ward, D. G., Johnson, P. J., Martin, A., Wenbin, W., et al. (2005). Liver tumors in wild flatfish: A histopathological, proteomic, and metabolomic study. OMICS: A Journal of Integrative Biology, 9, 281–299. doi:10.1089/omi.2005.9.281.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Higashi, T., Rakwal, R., Wakida, S.-I., & Iwahashi, H. (2007). Quantitative analysis of sulfur-related metabolites during cadmium stress response in yeast by capillary electrophoresis-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 44, 608. doi:10.1016/j.jpba.2007.01.049.

    Article  PubMed  CAS  Google Scholar 

  • Teague, C. R., Dhabhar, F. S., Beckwith-Hall, B., Powell, J., Cobain, M., Singer, B., et al. (2007). Metabonomic Studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. Journal of Proteome Research, 6, 2080–2093. doi:10.1021/pr060412s.

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan, S., Kell, D. B., & Goodacre, R. (2002). Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry, 13, 118–128. doi:10.1016/S1044-0305(01)00339-7.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310, 943–948. doi:10.1016/j.bbrc.2003.09.092.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Bundy, J. G., Pincetich, C. A., de Ropp, J. S., & Tjeerdema, R. S. (2005). NMR-derived developmental metabolic trajectories: An approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics, 1, 149–157. doi:10.1007/s11306-005-4429-2.

    Article  CAS  Google Scholar 

  • Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989. doi:10.1021/es034281x.

    Article  PubMed  CAS  Google Scholar 

  • Walter, J. A., Ewart, K. V., Short, C. E., Burton, I. W., & Driedzic, W. R. (2006). Accelerated hepatic glycerol synthesis in rainbow smelt (Osmerus mordax) is fuelled directly by glucose and alanine: A 1H and 13C nuclear magnetic resonance study. The Journal of Experimental Zoology, 305, 480–488.

    Google Scholar 

  • Waters, N. J., Waterfield, C. J., Farrant, R. D., Holmes, E., & Nicholson, J. K. (2006). Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity: Novel induction of 5-oxoprolinosis. Journal of Proteome Research, 5, 1448–1459. doi:10.1021/pr060024q.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J. T., Chan, M., Lee, D., Jiang, J. Y., Skrzypczak, M., & Choy, P. C. (2000). Phosphatidylcholine metabolism in human endothelial cells: Modulation by phosphocholine. Molecular and Cellular Biochemistry, 207, 95–100. doi:10.1023/A:1007054601256.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J. R., III. (2000). Mass spectrometry: From genomics to proteomics. Trends in Genetics, 16, 5–8. doi:10.1016/S0168-9525(99)01879-X.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Corey Coldwell, Laura Garrison and Ron Melanson for fish husbandry and maintenance of aquatic facilities, Joseph Hui for mass spectrometry, Dr Susan Douglas for helpful comments and Dr Kirty Solanky for initial sample collection. Funding for this project was provided by the Genomics and Health Initiative of the National Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias K. Karakach.

Additional information

Major contributions were made by Tobias K. Karakach (NMR, data analysis and manuscript preparation), Elizabeth C. Huenupi (UPLC-MS and data analysis), and Luis O.B. Afonso (stress experiments and fish husbandry).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 418 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakach, T.K., Huenupi, E.C., Soo, E.C. et al. 1H-NMR and mass spectrometric characterization of the metabolic response of juvenile Atlantic salmon (Salmo salar) to long-term handling stress. Metabolomics 5, 123–137 (2009). https://doi.org/10.1007/s11306-008-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0144-0

Keywords

Navigation