Skip to main content
Log in

Leakage of adenylates during cold methanol/glycerol quenching of Escherichia coli

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Effective and rapid inactivation of cellular metabolism is a prerequisite for accurate metabolome analysis. Cold methanol quenching is commonly applied to stop any metabolic activity and, at the same time remaining the cells’ integrity. However, it is reported that especially prokaryotic cells like Escherichia coli and Corynebacterium glutamicum tend to leak intracellular metabolites during cold methanol quenching. In this work leakage of adenylates is quantified for different quenching fluids. Further, a methanol/glycerol based quenching fluid is proposed, which reduces leakage drastically compared to the commonly applied methanol/water solution (16% ATP leakage compared to more than 70%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Zaid Siddiquee, K., Arauzo-Bravo, M. J., & Shimizu, K. (2004). Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Applied Microbiology and Biotechnology, 63, 407–417. doi:10.1007/s00253-003-1357-9.

    Article  PubMed  CAS  Google Scholar 

  • Bolten, C. J., Kiefer, P., Letisse, F., Portais, J. C., & Wittmann, C. (2007). Sampling for metabolome analysis of microorganisms. Analytical Chemistry, 79, 3843–3849. doi:10.1021/ac0623888.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz, A., Takors, R., & Wandrey, C. (2001). Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Analytical Biochemistry, 295, 129–137. doi:10.1006/abio.2001.5183.

    Article  PubMed  CAS  Google Scholar 

  • Buziol, S., Bashir, I., Baumeister, A., Claassen, W., Noisommit-Rizzi, N., Mailinger, W., et al. (2002). New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnology and Bioengineering, 80, 632–636. doi:10.1002/bit.10427.

    Article  PubMed  CAS  Google Scholar 

  • Faijes, M., Mars, A. E., & Smid, E. J. (2007). Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories, 6, 27. doi:10.1186/1475-2859-6-27.

    Article  PubMed  Google Scholar 

  • Fell, D. A. (1992). Metabolic control analysis: A survey of its theoretical and experimental development. The Biochemical Journal, 286, 313–330.

    PubMed  CAS  Google Scholar 

  • Hiller, J., Franco-Lara, E., Papaioannou, V., & Weuster-Botz, D. (2007). Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnology Letters, 29, 1161–1167. doi:10.1007/s10529-007-9383-9.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M. A., Ushiyama, H., Tomita, M., & Shimizu, K. (2005). Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochemical Engineering Journal, 26, 38–49. doi:10.1016/j.bej.2005.05.012.

    Article  CAS  Google Scholar 

  • Jensen, N. B., Jokumsen, K. V., & Villadsen, J. (1999). Determination of the phosphorylated sugars of the Embden–Meyerhoff–Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnology and Bioengineering, 63, 356–362. doi:10.1002/(SICI)1097-0290(19990505)63:3≤356::AID-BIT12≥3.0.CO;2-1.

    Article  PubMed  CAS  Google Scholar 

  • Jenzsch, M., Gnoth, S., Beck, M., Kleinschmidt, M., Simutis, R., & Lübbert, A. (2006). Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes. Journal of Biotechnology, 127, 84–94. doi:10.1016/j.jbiotec.2006.06.004.

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H., & Burns, J. A. (1973). The control of flux. Symposia of the Society for Experimental Biology, 27, 65–104.

    PubMed  CAS  Google Scholar 

  • Link, H., & Weuster-Botz, D. (2007). Steady state analysis of metabolic pathways: Comparing the double modulation method and the lin-log approach. Metabolic Engineering, 9, 433–441. doi:10.1016/j.ymben.2007.07.002.

    Article  PubMed  CAS  Google Scholar 

  • Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007). Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1147, 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Magnus, J. B., Hollwedel, D., Oldiges, M., & Takors, R. (2006). Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Biotechnology Progress, 22, 1071–1083. doi:10.1021/bp060072f.

    Article  PubMed  CAS  Google Scholar 

  • Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnology Letters, 29, 1–16. doi:10.1007/s10529-006-9218-0.

    Article  PubMed  CAS  Google Scholar 

  • Nasution, U., van Gulik, W. M., Kleijn, R. J., van Winden, W. A., Proell, A., & Heijnen, J. J. (2006). Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnology and Bioengineering, 94, 159–166. doi:10.1002/bit.20842.

    Article  PubMed  CAS  Google Scholar 

  • Oldiges, M., Lütz, S., Pflug, S., Schroer, K., Stein, N., & Wiendahl, C. (2007). Metabolomics: Current state and evolving methodologies and tools. Applied Microbiology and Biotechnology, 76, 495–511. doi:10.1007/s00253-007-1029-2.

    Article  PubMed  CAS  Google Scholar 

  • Savageau, M. (1969). Biochemical system analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25, 365–369. doi:10.1016/S0022-5193(69)80026-3.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, U., Boos, W., Takors, R., & Weuster-Botz, D. (1999). Automated sampling device for monitoring intracellular metabolite dynamics. Analytical Biochemistry, 270, 88–96. doi:10.1006/abio.1999.4048.

    Article  PubMed  CAS  Google Scholar 

  • Schaub, J., Schiesling, C., Reuss, M., & Dauner, M. (2006). Integrated sampling procedure for metabolome analysis. Biotechnology Progress, 22, 1434–1442. doi:10.1021/bp050381q.

    Article  PubMed  CAS  Google Scholar 

  • Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., & Huthmacher, K. (2007). Systems biology for industrial strains and fermentation processes–example: amino acids. Journal of Biotechnology, 129, 181–190. doi:10.1016/j.jbiotec.2007.01.031.

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan, S. (2005). Profiling microbial metabolomes: What do we stand to gain? Metabolomics, 1, 17–28. doi:10.1007/s11306-005-1104-6.

    Article  CAS  Google Scholar 

  • Vallino, J. J., & Stephanopoulos, G. (1993). Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 41, 633–646. doi:10.1002/bit.260410606.

    Article  PubMed  CAS  Google Scholar 

  • Villas-Bôas, S. G., & Bruheim, P. (2007). Cold glycerol-saline: The promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Analytical Biochemistry, 370, 87–97. doi:10.1016/j.ab.2007.06.028.

    Article  PubMed  Google Scholar 

  • Visser, D., van Zuylen, G. A., van Dam, J. C., Oudshoorn, A., Eman, M. R., Ras, C., et al. (2002). Rapid sampling for analysis of in vivo kinetics using the BioScope: A system for continuous-pulse experiments. Biotechnology and Bioengineering, 79, 674–681. doi:10.1002/bit.10328.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., & Hatzimanikatis, V. (2006). Metabolic engineering under uncertainty. I: Framework development. Metabolic Engineering, 8, 133–141. doi:10.1016/j.ymben.2005.11.003.

    Article  PubMed  CAS  Google Scholar 

  • Weuster-Botz, D. (1997). Sampling tube device for monitoring intracellular metabolite dynamics. Analytical Biochemistry, 246, 225–233. doi:10.1006/abio.1997.2009.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, C., Krömer, J. O., Kiefer, P., Binz, T., & Heinzle, E. (2004). Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Analytical Biochemistry, 327, 135–139. doi:10.1016/j.ab.2004.01.002.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Wang, W., van Winden, W. A., van Gulik, W. M., & Heijnen, J. J. (2004). A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. European Journal of Biochemistry, 271, 3348–3359. doi:10.1111/j.0014-2956.2004.04269.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study is based on the work supported by the Deutsche Forschungsgemeinschaft DFG under Grant No. WE 2715/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, H., Anselment, B. & Weuster-Botz, D. Leakage of adenylates during cold methanol/glycerol quenching of Escherichia coli . Metabolomics 4, 240–247 (2008). https://doi.org/10.1007/s11306-008-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0114-6

Keywords

Navigation