Skip to main content
Log in

Frontiers in metabolomics for cancer research: Proceedings of a National Cancer Institute workshop

  • Review
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

An NCI workshop entitled “Frontiers in Metabolomics for Cancer Research” was held in October 2005 to identify gaps in the application of metabolomics for cancer research and to disseminate information on metabolomics and its potential application. The workshop was sponsored by a number of groups, including the Division of Cancer Prevention, the Division of Cancer Biology, the Division of Cancer Epidemiology and Genetics, and the Center for Cancer Research within the National Cancer Institute, as well as the National Institutes of Health (NIH) Office of Dietary Supplements. Specific aims for the workshop were to (1) identify issues relevant to the use of metabolomics in the measurements of changes in cells or body fluids; (2) review a variety of approaches to metabolite-based phenotyping such as metabolomics arrays and spectroscopic profiles in relation to its application for patients and/or stratification for responders and non-responders to dietary components, drugs, and toxic agents; (3) discuss what additional information metabolomics provides over that given by genomics and/or proteomics; and (4) evaluate the current status of metabolomics technologies as they relate to cancer prevention research. The potential impact of emerging metabolomics technology and research approaches on our understanding of interactions among external environments is obvious. The study of metabolomics, as characterized by the study of small molecular weight compounds, has the promise of discerning subtle changes in metabolic pathways and shifts in mechanistic aspects of homeostasis—within a time span of seconds—that is not possible by other “omic” approaches. Another advantage is that metabolomic research findings are likely to be relevant to a wide range of chronic and/or infectious diseases, including cancer obesity, and cardiovascular disease. This manuscript is a summary of the workshop that highlighted the existing research and literature in the field of metabolomics for cancer research and research recommendations that may provide important steps forward for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almaas, E., Kovacs, B., Vicsek, T., et al. (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature, 427, 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Arias-Mendoza, F., Smith, M. R., & Brown, T. R. (2004). Predicting treatment response in non-Hodgkin’s lymphoma from the pretreatment tumor content of phosphoethanolamine plus phosphocholine. Academic Radiology, 11, 368–376.

    Article  PubMed  Google Scholar 

  • Boren, J., Cascante, M., Marin, S., et al. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. The Journal of Biological Chemistry, 276, 37747–37753.

    PubMed  CAS  Google Scholar 

  • Brindle, J. T., Antti, H., Holmes, E., et al. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1445.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L. L., Burns, M. A., Taylor, J. L., et al. (2005). Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Research, 65, 3030–3034.

    PubMed  CAS  Google Scholar 

  • Cramer, C. T., Goetz, B., Hopson, K. L., et al. (2004). Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. Journal of Lipid Research, 45, 1289–1301.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, N. C., Palsson, B. O., & Fu, P. (2004). Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics, 5, 63.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, D. I., Dunn, W. B., Griffin, J. L., et al. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243–1266.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Kristal, B., van Ommen, B., et al. (2006). Establishing reporting standards for metabolomic and metabonomic studies: A call for participation. Omics: A Journal of Integrative Biology, 10, 158–163.

    Article  CAS  Google Scholar 

  • Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. The FEBS Journal, 274, 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. L., & Nicholls, A. W. (2006). Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics, 7, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews. Cancer, 4, 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, J. R., & Stubbs, M. (2003). Opportunities for studying cancer by metabolomics: Preliminary observations on tumors deficient in hypoxia-inducible factor 1. Advances in Enzyme Regulation, 43, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Hakumaki, J. M., Poptani, H., Sandmair, A. M., Yla-Herttuala, S., & Kauppinen, R. A. (1999). 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: Implications for the in vivo detection of apoptosis. Nature Medicine, 5, 1323–1327.

    Article  PubMed  CAS  Google Scholar 

  • Hardt, P. D., Mazurek, S., Toepler, M., et al. (2004). Faecal tumour M2 pyruvate kinase: A new, sensitive screening tool for colorectal cancer. British Journal of Cancer, 91, 980–984.

    PubMed  CAS  Google Scholar 

  • Harkewicz, R., Fahy, E., Andreyev, A., & Dennis, E. A. (2007). Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells. The Journal of Biological Chemistry, 282, 2899–2910.

    Article  PubMed  CAS  Google Scholar 

  • Ibarra, R. U., Fu, P., Palsson, B. O., DiTonno, J. R., & Edwards, J. S. (2003). Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes. Journal of Molecular Microbiology and Biotechnology, 6, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Kaddurah-Daouk, R. (2006). Metabolic profiling of patients with schizophrenia. PLoS Medicine, 3, e363.

    Article  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., McEvoy, J., Baillie, R. A., et al. (2007). Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Molecular Psychiatry, 12, 934–945.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., & King, R. D. (2000). On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: The need for machine learning. Trends in Biotechnology, 18, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, R. J., DeGroot, J., Spies-Faber, E. J., et al. (2003). Identification of disease- and nutrient-related metabolic fingerprints in osteoarthritic Guinea pigs. The Journal of Nutrition, 133, 1776–1780.

    PubMed  CAS  Google Scholar 

  • Lee, W. N., & Go, V. L. (2005). Nutrient–gene interaction: Tracer-based metabolomics. The Journal of Nutrition, 135(Suppl. 12), 3027S–3032S.

    PubMed  CAS  Google Scholar 

  • Mazurek, S., Grimm, H., Boschek, C. B., Vaupel, P., & Eigenbrodt, E. (2002). Pyruvate kinase type M2: A crossroad in the tumor metabolome. The British Journal of Nutrition, 87(Suppl. 1), S23–S29.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, P. (2006). Metabolomics and the challenges ahead. Briefings in Bioinformatics, 7, 127.

    Article  PubMed  Google Scholar 

  • Mendes, P., Camacho, D., & de la Fuente, A. (2005). Modelling and simulation for metabolomics data analysis. Biochemical Society Transactions, 33, 1427–1429.

    Article  PubMed  CAS  Google Scholar 

  • Muoio, D. M., & Newgard, C. B. (2006). Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry, 75, 367–401.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (2003). Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nature Reviews. Drug Discovery, 2, 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, S. G. (2002). Functional genomics: Lessons from yeast. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 17–23.

    Article  CAS  Google Scholar 

  • Poitout, V., & Robertson, R. P. (2002). Minireview: Secondary beta-cell failure in type 2 diabetes—A convergence of glucotoxicity and lipotoxicity. Endocrinology, 143, 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S., Cudkowicz, M. E., Bogdanov, M., et al. (2005). Metabolomic analysis and signatures in motor neuron disease. Metabolomics, 1, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Salek, R. M., Maguire, M. L., Bentley, E., et al. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and man. Physiological Genomics, 29, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Molecular Systems Biology, 2, 1–10.

    Article  CAS  Google Scholar 

  • Schipper, R. G., Romijn, J. C., Cuijpers, V. M. J. I., et al. (2003). Polyamines and prostatic cancer. Biochemical Society Transactions, 31, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Serkova, N. J., Spratlin, J. L., & Eckhardt, S. G. (2007). NMR-based metabolomics: Translational application and treatment of cancer. Current Opinion in Molecular Therapeutics, 9, 572–585.

    PubMed  CAS  Google Scholar 

  • Solanky, K. S., Bailey, N. J., Beckwith-Hall, B. M., et al. (2003). Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Analytical Biochemistry, 323, 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Tonus, C., Neupert, G., & Sellinger, M. (2006). Colorectal cancer screening by non-invasive metabolic biomarker fecal tumor M2-PK. World Journal of Gastroenterology, 12, 7007–7011.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Darrell Anderson and Stefanie Nelson of the Scientific Consulting Group, Inc., Gaithersburg, MD, for their assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Maruvada, P. Frontiers in metabolomics for cancer research: Proceedings of a National Cancer Institute workshop. Metabolomics 4, 105–113 (2008). https://doi.org/10.1007/s11306-008-0109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0109-3

Keywords

Navigation